什么!我一直以来用的反相比例运算电路竟然有问题?!

一、前言背景

笔者最近在学习运算放大器的基本知识,写下此博客用作记录和分享学习笔记。如有不对还望各网友大神指正,本博客大量借鉴资料,笔者只是拾人牙慧的小屁孩。
笔者在阅读《Op Amps for Everyone》时,对反相比例运算电路中 R G R_{G} RG不能大于 R F R_{F} RF的问题颇具疑惑,在查询资料和反复思考中,得到了一定见解。
反相比例放大器

二、反馈与稳定性理论

(一)、传递函数中的极点和零点

运放的反馈环路框图
这是一个标准的反馈环路框图,当我们对其分析时,我们可以利用求解方程的方式对其进行化简:
在框图求和的结果处设定一个辅助函数 E E E
E = V I N − β V O U T E = V_{IN} - \beta V_{OUT} E=VINβVOUT
又因为 V O U T = E A V_{OUT} = EA VOUT=EA,合并消除 E E E可得
V O U T V I N = A 1 + A β \frac{V_{OUT}}{V_{IN}} = \frac{A}{1+ A\beta} VINVOUT=1+AβA
故, E = V I N − β V O U T = V I N 1 + A β E = V_{IN} - \beta V_{OUT} = \frac{V_{IN}}{1 + A\beta} E=VINβVOUT=1+AβVIN
在这里,我们把 V O U T V I N = A 1 + A β \frac{V_{OUT}}{V_{IN}} = \frac{A}{1+ A\beta} VINVOUT=1+AβA称为闭环增益 A β A\beta Aβ称为环路增益 E = V I N 1 + A β E = \frac{V_{IN}}{1 + A\beta} E=1+AβVIN称为误差
请记住,计算中使用的都是复数,复数具有幅值和方向。

我们可以根据此类传递函数绘制其对应的伯德图。(对不熟悉信号处理的读者来说,传递函数就是以 s = w j s = wj s=wj为自变量、在复数域的转移特性;而伯德图使用形如 20 lg ⁡ ( F ( t ) ) = 20 lg ⁡ ( ∣ F ( t ) ∣ ) + j θ 20\lg{(F(t))} = 20\lg{(|F(t)|)} + j \theta 20lg(F(t))=20lg(F(t))+jθ,其中 θ \theta θ为辐角,的对数公式进行图像描述)

而在伯德图上,极易令人关注的点为极点和零点。
举个例子:对于一个带阻滤波器,可得到如下传递函数
极点和零点的例子-电路

极点和零点的例子-传递函数
我们将传递函数上分母为零的转折点,称为极点,在幅频特性上反映为向下倾斜的直线;接着将传递函数上分子为零的转折点,称为零点,在幅频特性上反映为向上倾斜的直线。

零点:当系统输入幅度不为零且输入频率使系统输出为零时,此输入频率值即为零点。
极点:当系统输入幅度不为零且输入频率使系统输出为无穷大(系统稳定破坏,发生振荡)时,此频率值即为极点。

将其分段进行绘制
极点和零点的例子-幅频特性
并利用 s → 0 s \rightarrow 0 s0 G → 1 2 G \rightarrow \frac{1}{2} G21 s → ∞ s \rightarrow \infty s G → 1 G \rightarrow 1 G1确定两端,之后将曲线整合到一张图中可得到粗略的伯德图:

极点和零点的例子-伯德图
每一个极点之处,增益衰减-3dB,并移相-45度。极点之后每十倍频,增益下降20dB。
零点与极点相反;每一个零点之处,增益增加3dB,并移相45度。零点之后,每十倍频,增益增加20dB。

伯德图仿真
可以看见当在极点频率处,增益衰减-3dB,并移相-45度。

当然,当传递函数中存在N多极点或零点时,其相位和增益都是相互叠加作用的结果。

知道了这些对我们理解运放有什么用呢?
举个极端的例子方便你的理解——当环路增益( A β A\beta Aβ)趋近于 − 1 -1 1时( 1 ∠ − 180 ° 1\angle{-180°} 1∠180°),其闭环增益( V O U T V I N = A 1 + A β \frac{V_{OUT}}{V_{IN}} = \frac{A}{1+ A\beta} VINVOUT=1+AβA)趋近于 1 / 0 = ∞ 1/0=\infty 1/0=。理论上,如果没有能量限制或者别的什么非线性限制,运放将放大当前信号到无穷大。这就说明你的输出在不受控制的振荡了。

(二)、把运放代入伯德图

现在我们将目光放在运放上,首先考虑理想运放,当其工作在负反馈时,其模型与上诉模型一致,故我们也可以得出运放的闭环增益为: V O U T V I N = A 1 + A β \frac{V_{OUT}}{V_{IN}} = \frac{A}{1+ A\beta} VINVOUT=1+AβA
我们对两边取对数,并绘制其伯德图:
20 lg ⁡ ( V O U T V I N ) = 20 lg ⁡ ( A ) − 20 lg ⁡ ( 1 + A β ) 20\lg{(\frac{V_{OUT}}{V_{IN}})} =20\lg{(A)}-20\lg{(1+ A\beta)} 20lg(VINVOUT)=20lg(A)20lg(1+Aβ)
理想运放的伯德图
在这张伯德图中不存在任何能提供负相移的极点,电路不会振荡。

但是这种运放的理想特性是目前所没有的。真实运放会因为内部的多个电容而喜获多个极点。
这会让运放随着频率升高,内部的寄生电容对应的极点效应累积起来,环路增益( A β A\beta Aβ)迅速到达 1 ∠ − 180 ° 1\angle{-180°} 1∠180°,导致不稳定。

于是集成电路设计师选择“如果打不过对方,就加入对方”的策略,通过在运放内部增加补偿电容的方法,有意地为运放引入了一个主要的极点。
单极点运放
A = a 1 + j w w a A = \frac{a}{1 + j \frac{w}{w_{a}}} A=1+jwawa
主极点运放的幅频特性
我们常说的单位增益频率也就是0dB和电路开环增益( A A A)的交点频率,当开环增益小于1时,内部寄生电容效应迅速累积,使环路增益( A β A\beta Aβ)快速达到 1 ∠ − 180 ° 1\angle{-180°} 1∠180°

(三)、环路增益图助力理解稳定性

稳定性由环路增益( A β A\beta Aβ)决定。
当环路增益( A β A\beta Aβ)等于 − 1 = ∣ 1 ∣ ∠ − 180 ° -1 = |1|\angle{-180°} 1=∣1∣∠180°时,系统将会变得不稳定甚至振荡。
当我们在设计放大器的频率特性时,必须注意不要让环路增益的相移累积到 − 180 ° -180° 180°
在相移接近 − 180 ° -180° 180°,就会出现诸如振铃或过冲等问题。
需要理解的是,传递函数的相位特性是系统对不同频率的输入信号产生的相位变化,即延时特性。当相移越接近 − 180 ° -180° 180°,我们也称相位裕度越小时,此时,输出信号相对于输入信号滞后了接近 180 ° 180° 180°,此时它们的误差是相对较大的,系统需要更多的时间进行调节,此时会存在更长的稳定时间和较大的瞬态误差。

这里我模拟了 A β A\beta Aβ的模值为 1 1 1时,但滞后相位是变量的例子,帮助大家理解:
当相位裕度为 170 ° 170° 170°时,
相位裕度反馈模拟-相位裕度大
当相位裕度为 10 ° 10° 10°时,
相位裕度反馈模拟-相位裕度小
可以看出,当相位裕度越大,过冲(超调)越小,系统越稳定(但稳定的时间更长),但同时响应速度也会减慢(因为Error的幅值更小)。

三、反相比例运算电路的分析

(一)、对反相比例运算电路做衰减时进行稳定性分析

在平时使用运算放大器时,我们通常使用理想运算放大器进行分析,在计算需要的闭环增益时,我们通常假设运放的开环增益 a → ∞ a \rightarrow \infty a(由于是理想运算放大器,故电路的开环增益为 A → ∞ A \rightarrow \infty A),故此时的闭环增益为: lim ⁡ A → ∞ A 1 + A β = 1 β \lim\limits_{A \rightarrow \infty}{\frac{A}{1+ A\beta}}=\frac{1}{\beta} Alim1+AβA=β1
就比如反相比例运算电路,
反相比例运算电路
我们对 V A V_{A} VA列出结点方程: V A = V I N ( Z F / ( Z F + Z G ) ) + V O U T ( Z G / ( Z F + Z G ) ) V_{A} = V_{IN}(Z_{F}/(Z_{F}+Z_{G}))+V_{OUT}(Z_{G}/(Z_{F}+Z_{G})) VA=VIN(ZF/(ZF+ZG))+VOUT(ZG/(ZF+ZG))
我们再假设运放为高阻( I B = 0 I_{B} = 0 IB=0),
再接合 V O U T = − a V A V_{OUT} = -aV_{A} VOUT=aVA
则给推出
V O U T V I N = − a Z F Z F + Z G 1 + a Z G Z F + Z G \frac{V_{OUT}}{V_{IN}}=\frac{\frac{-aZ_{F}}{Z_{F}+Z_{G}}}{1+ \frac{aZ_{G}}{Z_{F}+Z_{G}}} VINVOUT=1+ZF+ZGaZGZF+ZGaZF
以此作为反相比例运算电路的闭环增益。
需要注意的是,此时的电路的开环增益为 A = − a Z F Z F + Z G A=\frac{-aZ_{F}}{Z_{F}+Z_{G}} A=ZF+ZGaZF,反馈因子为 β = − Z G Z F \beta=-\frac{Z_{G}}{Z_{F}} β=ZFZG
在这里,值得区分的是电路的开环增益 A = − a Z F Z F + Z G A=\frac{-aZ_{F}}{Z_{F}+Z_{G}} A=ZF+ZGaZF)和运放的开环增益 a a a有所不同。利用这个电路的开环增益和反馈因子,我们可以得到这个电路的环路增益:
A β = − a Z F Z F + Z G ⋅ − Z G Z F = a Z G Z F + Z G A\beta = \frac{-aZ_{F}}{Z_{F}+Z_{G}} \cdot -\frac{Z_{G}}{Z_{F}} = \frac{aZ_{G}}{Z_{F}+Z_{G}} Aβ=ZF+ZGaZFZFZG=ZF+ZGaZG
如果,这是一个牛比的理想运算放大器,则有 lim ⁡ a → ∞ ( V O U T V I N ) = lim ⁡ a → ∞ ( − a Z F Z F + Z G 1 + a Z G Z F + Z G ) = − Z F Z F + Z G ⋅ Z F + Z G Z G = − Z F Z G \lim\limits_{a \rightarrow \infty}(\frac{V_{OUT}}{V_{IN}}) =\lim\limits_{a \rightarrow \infty} ( \frac{\frac{-aZ_{F}}{Z_{F}+Z_{G}}}{1+ \frac{aZ_{G}}{Z_{F}+Z_{G}}} )= \frac{-Z_{F}}{Z_{F}+Z_{G}} \cdot \frac{Z_{F}+Z_{G}}{Z_{G}} = \frac{-Z_{F}}{Z_{G}} alim(VINVOUT)=alim(1+ZF+ZGaZGZF+ZGaZF)=ZF+ZGZFZGZF+ZG=ZGZF,就是等于 1 β \frac{1}{\beta} β1
但是,您也知道,目前我们并未生成出理想运算放大器,所以这个运放的开环增益( a a a)是无法实现恒定的无穷的,并且其对应的电路的环路增益也会对应的引入极点。

电路的环路增益( A β = a Z G Z F + Z G A\beta = \frac{aZ_{G}}{Z_{F}+Z_{G}} Aβ=ZF+ZGaZG)如果本身具有不多的相位裕度,而当 Z F < Z G Z_{F} < Z_{G} ZF<ZG时,可以不难发现,环路增益( A β = a Z G Z F + Z G A\beta = \frac{aZ_{G}}{Z_{F}+Z_{G}} Aβ=ZF+ZGaZG)被增大了,随之相位裕度也减小了。随着相位裕度的减小,过冲(超调)增大,有甚者可能出现振铃,系统越不稳定(但需要稳定的时间更短),但同时响应速度也会变快。
增大环路增益
总而言之,由于 Z F < Z G Z_{F} < Z_{G} ZF<ZG,让环路增益增大了,让相位裕度减小了,降低了稳定性。

(二)、搭建仿真验证结果

我们根据其环路增益的原理,断开反馈端,以测试信号测量其环路增益,再从反馈端获取激励信号,从而进行分析。
反相比例运算电路计算其环路增益的方法
搭建仿真进行测试:

  • 参考1
    反馈因子 β = − 1 / 5 \beta=-1/5 β=1/5
    相位裕度测量大约为66°

相位裕度为66度
其时域波形,相位裕度为66度-时域

  • 参考2
    反馈因子 β = − 1000 \beta=-1000 β=1000
    相位裕度测量为51.429°
    相位裕度为51.429度
    其时域波形,
    相位裕度为51.429度-时域

可以看出,在仿真中,对于相位裕度小的系统,其过冲也会相应变大,其系统的稳定性降低。

总结

对于系统的设计需要考虑相位裕度考虑,对应为设计的环路增益的考虑,这与系统的稳定性息息相关。这篇博客仅为一个理论推导和理想仿真,甚至没有考虑容性负载对运放相位裕度的恶化(或者寄生参数,当然也不是所有的寄生参数都会让运放不稳定,有的运放相位裕度补偿甚至会运用寄生电容引入零点等骚套路,以后有机会可以开个新坑)。
总而言之,运放使用时,请牢记,除了运放理想闭环增益是你设计的根本外,还有其动力学特性需要考虑。

参考资料

[1] Bruce Carter, Ron Mancini. Op Amps for Everyone[M]. Fifth Edition. United States: Elsevier Inc, 2018.
[2] 零点和极点的区别及其物理意义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值