零基础入门语义分割-Task2 数据扩增

本文介绍了在语义分割中应用数据增广的方法,包括水平翻转、垂直翻转、旋转、随机缩放和cutout等。重点提及了albumentations库,这是一个基于OpenCV的快速数据增强工具,能方便地与Pytorch等深度学习框架结合使用。通过示例展示了如何使用albumentations进行图像增强。
摘要由CSDN通过智能技术生成

本文主要介绍语义分割中的数据增广方法,使用了OpenCV和albumentations两个库完成具体的数据增广操作。

1、常见的数据增广方法

对于语义分割而言,数据增广方法回改变图像的标签,因为在改变图片时,对应的像素会发生变化,导致标签也会发生变化。

  • 水平翻转
  • 垂直翻转
  • 旋转
  • 随机缩放(极其重要)
  • cutout

2、albumentations数据扩增

albumentations是基于OpenCV的快速训练数据增强库,拥有非常简单且强大的可以用于多种任务(分割、检测)的接口,易于定制且添加其他框架非常方便。

albumentations 可以与深度学习框架Pytorch配合使用,使用起来更加方便。

import albumentations as A
import cv2

# Declare an augmentation pipeline
transform = A.Compose(
	A.VerticalFlip(p=0.5), #随机垂直翻转
	A.HorizontalFlip(p=0.5), # 随机水平翻转
	A.RandomRotate90(p=0.5), # 随机旋转90度
	A.Transpose(p=0.5),  # 随机交换行和列
    A.RandomCrop(width=256, height=256),
    A.RandomBrightnessContrast(p=0.2),
])

# Read an image with OpenCV and convert it to the RGB colorspace
image = cv2.imread("image.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# Augment an image
transformed = transform(image=image)
transformed_image = transformed["image"]

下图为效果图。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值