前言
在之前的文章中我们介绍了使用膨胀和腐蚀、计算图像梯度的方式来获取图像的轮廓,本篇文章将介绍另外一种可以获取图像轮廓的方法——边缘检测
1.基本概念
首先我们来看一下边缘检测的基本过程
1) 滤波
使用高斯滤波器,以平滑图像,滤除噪声
H即为高斯分布的卷积核,初看上去似乎这个矩阵似乎很莫名其妙,但其实他的特征很明显,中间的数值要比周围的大,因为高斯滤波使用的卷积核是满足高斯分布,即正态分布的(是的,高斯分布就是正态分布)
关于高斯滤波的细节请参考之前的文章:opencv-python常用函数解析及参数介绍(三)——图像滤波
2) 计算梯度
计算图像中每个像素点的梯度强度和方向。
我们以3x3的sobel算子为例计算梯度<