opencv-python常用函数解析及参数介绍(七)——边缘检测

前言

在之前的文章中我们介绍了使用膨胀和腐蚀、计算图像梯度的方式来获取图像的轮廓,本篇文章将介绍另外一种可以获取图像轮廓的方法——边缘检测

1.基本概念

首先我们来看一下边缘检测的基本过程

1) 滤波

使用高斯滤波器,以平滑图像,滤除噪声
在这里插入图片描述
H即为高斯分布的卷积核,初看上去似乎这个矩阵似乎很莫名其妙,但其实他的特征很明显,中间的数值要比周围的大,因为高斯滤波使用的卷积核是满足高斯分布,即正态分布的(是的,高斯分布就是正态分布)

关于高斯滤波的细节请参考之前的文章:opencv-python常用函数解析及参数介绍(三)——图像滤波

2) 计算梯度

计算图像中每个像素点的梯度强度和方向。

我们以3x3的sobel算子为例计算梯度<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值