优化方法-序

数学上有一个原则:把复杂问题转换为简单问题。

例如,约束优化通过拉格朗日形式转换成无约束优化问题。将非线性问题通过近似和残差约束转换为线型问题。

无约束优化问题是优化领域研究的基础性问题,基础性方法,如最速下降法,牛顿法,共轭梯度法,是其他复杂方法的基础。所以掌握上述经典的思想对于理解新方法大有裨益。

优化问题可以表示如下:
{ m i n f ( x ) s . t . x ∈ Ω \begin{cases} min\quad f(x)\\ \\ s.t.\quad x\in \Omega\quad \end{cases} minf(x)s.t.xΩ

Ω为某个指定的集合,称为可行集或可行域,f(x)为定义在集合Ω上的连续可微的多元实值函数。
其中
Ω = { x ∈ R n ∣ c i ( x ) = 0 , i ∈ ξ ; c i ( x ) ≥ 0 , i ∈ ζ } , \\ \Omega = \{ x \in R^n | c_i(x) = 0,i \in \xi ; c_i(x)\ge 0,i \in \zeta\}, Ω={xRnci(x)=0,iξ;ci(x)0,iζ}
当ζ与ξ是空集的时候,以上问题就是无约束优化问题。

参考博客:
https://blog.csdn.net/qq_36935593/article/details/79026402
https://blog.csdn.net/hanlin_tan/article/details/47376237

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值