数学上有一个原则:把复杂问题转换为简单问题。
例如,约束优化通过拉格朗日形式转换成无约束优化问题。将非线性问题通过近似和残差约束转换为线型问题。
无约束优化问题是优化领域研究的基础性问题,基础性方法,如最速下降法,牛顿法,共轭梯度法,是其他复杂方法的基础。所以掌握上述经典的思想对于理解新方法大有裨益。
优化问题可以表示如下:
{
m
i
n
f
(
x
)
s
.
t
.
x
∈
Ω
\begin{cases} min\quad f(x)\\ \\ s.t.\quad x\in \Omega\quad \end{cases}
⎩⎪⎨⎪⎧minf(x)s.t.x∈Ω
Ω为某个指定的集合,称为可行集或可行域,f(x)为定义在集合Ω上的连续可微的多元实值函数。
其中
Ω
=
{
x
∈
R
n
∣
c
i
(
x
)
=
0
,
i
∈
ξ
;
c
i
(
x
)
≥
0
,
i
∈
ζ
}
,
\\ \Omega = \{ x \in R^n | c_i(x) = 0,i \in \xi ; c_i(x)\ge 0,i \in \zeta\},
Ω={x∈Rn∣ci(x)=0,i∈ξ;ci(x)≥0,i∈ζ},
当ζ与ξ是空集的时候,以上问题就是无约束优化问题。
参考博客:
https://blog.csdn.net/qq_36935593/article/details/79026402
https://blog.csdn.net/hanlin_tan/article/details/47376237