PyTorch是深度学习的主流框架之一,新手入门相对容易。课程将算法、模型和基础理论知识进行有机结合,结合多个不同的CV与NLP实战项目,帮助大家掌握PyTorch框架的基础知识和使用方法,带大家较平稳地入门深度学习领域。我的图书馆留言交流
Python被确定为数据科学和机器学习的进入语言,部分感谢开源ML库Pytorch。 Pytorch的功能强大的深度神经网络建筑工具和易用性使其成为数据科学家的热门选择。随着其人气的发展,越来越多的公司正在从Tensorflow转移到Pytorch,现在开始使用Pytorch的最佳时间。 今天,我们将帮助了解Pytorch如此流行的是什么,使用Pytorch的一些基础,并帮助您制作第一个计算模型。 这是我们今天的封面:
什么是pytorch?PyTorch是一个开源机器学习Python库,用于深度学习实现,如计算机视觉(使用武器)和自然语言处理。它是由Facebook的AI Research Lab(Fair)于2016年开发的,自数据科学和ML领域以来已采用。 Pytorch为已经熟悉Python的人提供了直观的机器,并且具有oop支持和动态计算图等具有很大的功能。 除了构建深度神经网络之外,由于其GPU加速,Pytorch也非常适合复杂的数学计算。此功能允许Pytorch使用计算机的GPU来大量加速计算。
为什么要使用pytorch?在Pytorch之前,开发人员使用高级微积分来查找反向传播错误和节点加权之间的关系。更深的神经网络呼吁越来越复杂的操作,限制机器学习的规模和易在性。 现在,我们可以使用ML图书馆自动完成所有的微积分!ML库可以在几秒钟内计算任何大小或形状网络,允许更多开发人员构建更大和更好的网络。 Pytorch通过表现类似于标准Python来进一步逐步迈出此访问。您可以使用现有的Python知识来快速开始启动现有的Python知识而不是学习新的语法。此外,您可以使用Pytorch使用额外的Python库,例如Pycharm调试器等流行调试器。 pytorch与tensorflow.Pytorch和Tensorflow之间的主要区别是简单和性能之间的权衡:Pytorch更容易学习(特别是对于Python程序员),而Tensorflow具有学习曲线,但执行更好并且更广泛地使用。
|