Pytorch深度学习入门与实战

该博客介绍了PyTorch作为深度学习主流框架的入门知识,通过整合算法、模型和理论,结合计算机视觉与自然语言处理的实战项目,旨在帮助初学者掌握PyTorch的使用,并踏入深度学习领域。
摘要由CSDN通过智能技术生成

PyTorch是深度学习的主流框架之一,新手入门相对容易。课程将算法、模型和基础理论知识进行有机结合,结合多个不同的CV与NLP实战项目,帮助大家掌握PyTorch框架的基础知识和使用方法,带大家较平稳地入门深度学习领域。我的图书馆留言交流

Python被确定为数据科学和机器学习的进入语言,部分感谢开源ML库Pytorch。

Pytorch的功能强大的深度神经网络建筑工具和易用性使其成为数据科学家的热门选择。随着其人气的发展,越来越多的公司正在从Tensorflow转移到Pytorch,现在开始使用Pytorch的最佳时间。

今天,我们将帮助了解Pytorch如此流行的是什么,使用Pytorch的一些基础,并帮助您制作第一个计算模型。

这是我们今天的封面:

  • 什么是pytorch?
  • 为什么要使用pytorch?
  • pytorch基础知识
  • 使用pytorch计算图表
  • 与Pytorch的实践:多路径计算图
  • 你学习的下一步

什么是pytorch?

PyTorch是一个开源机器学习Python库,用于深度学习实现,如计算机视觉(使用武器)和自然语言处理。它是由Facebook的AI Research Lab(Fair)于2016年开发的,自数据科学和ML领域以来已采用。

Pytorch为已经熟悉Python的人提供了直观的机器,并且具有oop支持和动态计算图等具有很大的功能。

除了构建深度神经网络之外,由于其GPU加速,Pytorch也非常适合复杂的数学计算。此功能允许Pytorch使用计算机的GPU来大量加速计算。

这种独特的功能和Pytorch的无与伦比的简单的组合使其成为最受欢迎的深度学习库之一,只有顶点的Tensorflow竞争。

为什么要使用pytorch?

在Pytorch之前,开发人员使用高级微积分来查找反向传播错误和节点加权之间的关系。更深的神经网络呼吁越来越复杂的操作,限制机器学习的规模和易在性。

现在,我们可以使用ML图书馆自动完成所有的微积分!ML库可以在几秒钟内计算任何大小或形状网络,允许更多开发人员构建更大和更好的网络。

Pytorch通过表现类似于标准Python来进一步逐步迈出此访问。您可以使用现有的Python知识来快速开始启动现有的Python知识而不是学习新的语法。此外,您可以使用Pytorch使用额外的Python库,例如Pycharm调试器等流行调试器。

pytorch与tensorflow.

Pytorch和Tensorflow之间的主要区别是简单和性能之间的权衡:Pytorch更容易学习(特别是对于Python程序员),而Tensorflow具有学习曲线,但执行更好并且更广泛地使用。

  • 人气:Tensorflow是行业专业人士和研究人员的当前转向工具,因为它比Pytorch较早发布了1年。然而,Pytorch用户的速度比Tensorflow更快,表明Pytorch可能很快是最受欢迎的。
  • 数据并行性:Pytorch包括声明性数据并行性,换句话说,它会自动将数据处理的工作量分布在不同的GPU上以加速性能。Tensorflow有并行性,但它要求您手动分配工作,这通常
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值