Pytorch深度学习与入门实战

Pytorch简介

Pytorch是一个能在CPU和GPU上运行并解决各类深度学习问题的深度学习框架。可以将其看做是支持GPU计算和自动微分计算的Numpy库。
在PyTorch诞生之前,像caffe和torch这样的深度学习库是很受欢迎的深度学习库。随着深度学习快速发展,开发人员和研究人员希望有一个高效、易于使用的框架,并且以Python编程语言构建、训练和评估神经网络。
PyTorch简介
PyTorch是一个灵活容易学习python库,在学术和研究领域PyTorch是最受欢迎的深度学习库。
PyTorch是Tensorflow最强有力的竞争对手。
PyTorch框架的产生受到Torch和Chainer这两个框架的启发。
与Torch使用Lua语言相比,PyTOrch是一个python优先的框架,我们可以继承PyTorch类然后自定义。
与Chainer类型,PyTorch框架具有自动求导的动态图功能,也就是所谓define by run,即当python解释器运行到相应的行时,才创建计算图。

Pytorch特点

  • 易于使用的API——它就像python一样简单。
  • python的支持——PyTorch可以顺利地与python数据科学集成。它非常类似于Numpy.
  • 动态计算图——取代了具有特定优势的静态图,pytorch为我们提供了一个框架,以便可以在运行时构建计算图,甚至在运行时更改它们。
  • 部署简单——pytorch提供了可用于大规模部署Pytorch模型的工具torchserve.TorchServe是pytorch开源项目的一部分,是一个易于使用的工具,用于大规模部署Pytorch模型。
  • 支持分布式训练——pytorch可实现研究和生产中的分布式训练和性能优化。
  • 支持移动端——Pytorch支持从python到IOS和安卓系统部署的端到端工作流程。
  • 强大的生态系统——pytorch具有丰富的工具和库等生态系统,为计算机视觉、NLP等方面的开发提供便利。
  • 内置开放神经网络交换协议(ONNX)——可以很方便与其他深度学习框架互操作。

PyTorch安装环境要求

PyTorch安装环境要求

PyTorch兼容的Python版本

windows上的Pytorch仅支持python 3.7-3.9,不支持python 2.x

搭建开发环境

推荐使用Miniconda搭建python环境
Miniconda是最小的conda安装环境,它提供了:
1.Conda包管理工具
2.python

下载Miniconda![下载miniconda](https://img-blog.csdnimg.cn/adace1a2f7ae476aa883b53203477c92.pn

GPU版本的python可以利用NVIDIA GPU强大的计算加速能力,使Python的运行更为高效,尤其是可以成倍提升模型训练的速度。

Pytorch官网地址

https://pytorch.org/get-started/locally/
快速下载CPU版本torch的网址:pip3 install torch torchvision torchaudio -i https://pypi.doubanio.com/simple

GPU版本安装

GPU版本安装
CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
为了使用CUDA,需要安装cudatolkit,在这里我们与pytorch一并都使用conda安装。

检查显卡驱动

检查显卡驱动
GPU版本安装
这样网站会给出我们具体的安装命令,我们在anaconda prompt(miniconda3)命令行中参考网站给出的安装命令执行安装即可。

依赖库安装

依赖库安装<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陌上花开,静待绽放!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值