三维重建学习(二)相机的标定(上)

这篇博客主要探讨了三维重建的数学基础,特别是相机的标定过程。介绍了齐次坐标的概念,包括从不齐次到齐次、从齐次到不齐次的转换。此外,还详细阐述了不同类型的相机模型,如小孔成像模型、投影相机模型以及以CCD为传感器的相机模型,为理解相机标定的数学表达奠定基础。
摘要由CSDN通过智能技术生成

前言

这一篇主要补充一些关于三维重建的数学理论和模型,因为想理解相机的标定需要有一定的理论基础。相机标定的具体方法以及数学表达在下一篇具体讲解。

Homogeneous Coordinate 齐次坐标

齐次坐标与我们一般使用的笛卡尔坐标(下文统一用非齐次坐标代称)有一个本质的区别,就是齐次坐标多了一个component,具体来说,在三维世界中,非齐次坐标用(x, y, z)来刻画一个点的位置。而齐次坐标则是(x, y, z, 1)或者更一般化的(x, y, z, w)。
显然最大的疑惑是为什么要引入齐次坐标?或者说用齐次坐标刻画三维世界有什么独特的好处?齐次坐标最大的特点叫做 “Invariant to scaling”.简单来说,齐次坐标对于乘以或者除去一个常量的运算可以保持不变。为什么是这样?这个问题我先不回答,接下来讲完齐次坐标与非齐次坐标的转换后,答案自然就明了了。

Inhomogeneous to Homogeneous

将一个点从非齐次坐标转换成齐次坐标很简单,而且是绝对的。
例如点 (x, y, z, w) ,首先要将其最后一个量化成1,即(x/w, y/w, z/w, 1),然后取前三个量即可得到对应的齐次坐标。从这就很容易理解,为什么非齐次坐标乘以一个标量后,并没有实际意义,因为其实际对应的齐次坐标点并没有发生改变。

Homogeneous to Inhomogeneous

把一个点从齐次坐标转换到非齐次坐标中,默认到方法就是在原坐标中再加一个1,即 (x, y, z) 变成了 (x, y, z, 1)。但事实是这不是一个单一解的绝对过程,从上面的转换也可以看出,非齐次坐标中的一个点对应齐次坐标中的唯一一个点,但是反之却并不唯一。点(x,y,z)可以对应由任何实数w构成的点(wx,wy,wz,w)。

Camera Model 相机模型

Pinhole Camera Model 小孔成像


根据相似三角形,可以表达出空间中的点X与原点C的连线最终交与投影平面的点的3D坐标

想拿到这个3D点在2D平面上的坐标,只要把Z轴的量舍去即可
<
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值