「营业日志 2021.2.5」反射容斥的代数推导

Q ( x , t ) Q(x,t) Q(x,t) 是由 { 1 ‾ , 1 } \{\overline 1,1\} {1,1} 所构成的游走方案,即 Q ( x , t ) = ∑ n , k a n , k x n t k Q(x,t) = \sum_{n,k} a_{n,k} x^nt^k Q(x,t)=n,kan,kxntk 表示从 0 0 0 位置走 k k k 步,最后走到 n n n 位置,且过程中坐标均 ≥ 0 \ge 0 0 的方案数。

首先这个方程应该大致长这样:

Q ( x , t ) = 1 + ( x ‾ + x ) t Q ( x , t ) − x ‾ t Q ( 0 , t ) Q(x,t) = 1 + (\overline x + x)t Q(x,t) - \overline x tQ(0,t) Q(x,t)=1+(x+x)tQ(x,t)xtQ(0,t)

其中 x ‾ = x − 1 \overline x = x^{-1} x=x1

于是就有

K ( x , t ) ⋅ x Q ( x , t ) = x − t Q ( 0 , t ) K(x,t) \cdot xQ(x,t) = x - tQ(0,t) K(x,t)xQ(x,t)=xtQ(0,t)

此时我们代入 x ↦ x ‾ x\mapsto \overline x xx,注意到 K ( x , t ) = 1 − ( x ‾ + x ) t K(x,t) = 1 - (\overline x + x)t K(x,t)=1(x+x)t 在作用下不变,就有了第二个方程

K ( x , t ) ⋅ x ‾ Q ( x ‾ , t ) = x ‾ − t Q ( 0 , t ) K(x,t) \cdot \overline xQ(\overline x,t) = \overline x - tQ(0,t) K(x,t)xQ(x,t)=xtQ(0,t)

两式做差,就有

K ( x , t ) ⋅ ( x Q ( x , t ) − x ‾ Q ( x ‾ , t ) ) = x − x ‾ x Q ( x , t ) − x ‾ Q ( x ‾ , t ) = x − x ‾ 1 − ( x ‾ + x ) t \begin{aligned} K(x,t) \cdot (xQ(x,t) - \overline x Q(\overline x ,t)) &= x - \overline x\\ xQ(x,t) - \overline x Q(\overline x ,t) &= \frac{x - \overline x}{1 - (\overline x + x)t} \end{aligned} K(x,t)(xQ(x,t)xQ(x,t))xQ(x,t)xQ(x,t)=xx=1(x+x)txx

接下来是一个重要观察, x Q ( x , t ) xQ(x,t) xQ(x,t) 的系数全都在 x x x 的正次幂,而 x ‾ Q ( x ‾ , t ) \overline x Q(\overline x,t) xQ(x,t) 的系数全在负次幂,因此 Q ( x , t ) Q(x,t) Q(x,t) 的系数和

1 − x 2 ‾ 1 − ( x ‾ + x ) t \frac{1 - \overline {x^2}}{1 - (\overline x + x)t} 1(x+x)t1x2

的非负次项是一致的!将式子展开,我们就得到了和反射容斥相同的结果。

这样方法在高维情况具有一些扩展,参看 Counting walks with large steps in an orthant, Journal of the European Mathematical Society, Alin Bostan, Mireille Bousquet-Mélou, Stephen Melczer

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值