5.1二叉树——基本概念梳理

本篇博客梳理二叉树相关的基本概念

一、树的概念与结构

1.树是递归定义

树==根+N棵子树,每棵子树也可按照相同方式拆分
注意:子树之间不能有交集,否则变成(是另一种数据结构)
树

2.树的相关概念

(1)结点的度:一个结点含有的子树(子结点)的个数;A的度为6
(2)叶节点/终端结点:度为0的结点;如B,C,H,I,L,M,N
(3)双亲结点/父结点:如E是I和J的父节点
(4)孩子节点/子结点:如I,J是E的子节点
(5)树的高度/深度:图中树的高度为4

3.树的表示

(1)要求:既要保存值域,也要保存结点之间的关系
(2)左孩子右兄弟表示法
此方法可以高效地找到一个节点的所有子节点

typedef int DataType; 
struct Node 
{ 
	struct Node* firstChild1; // 第一个孩子结点 
	struct Node* pNextBrother; // 指向其下一个兄弟结点 
	DataType data; // 结点中的数据域 
};

左孩子右兄弟表示法

二、二叉树的概念与结构

假设树的高度为h,结点数为N

1.概念

子结点最多两个(度最大是2)

2.特殊的二叉树

(1)完全二叉树
①前(h-1)层为满二叉树
②最后一层不满,且最后一层从左到右必须连续

(2)满二叉树(特殊的完全二叉树):每层的节点数都达到最大

3.满二叉树的性质

深度为h的树,有性质
逻辑:第一层0个结点,即2^0;第二层1个结点,即2 ^ 1;以此类推,最终用等比数列求和可得结果
满二叉树

4.二叉树的存储结构

(1)顺序存储:用数组来存储
①只适合表示完全二叉树,如果不是完全二叉树会有空间浪费
顺序存储
②物理上:是一个数组;逻辑上:是一棵二叉树
③父子之间的坐标关系(设父亲下标为i)
左孩子下标:2i+1
右孩子下标:2i+2

反之:若左孩子下标为j,可求得父结点坐标为**(j-1)/2**
(2)链式存储:用链表来存储——数据域+左右指针域

typedef int BTDataType; 
// 二叉链 
struct BinaryTreeNode 
{ 
	struct BinTreeNode* left; // 指向当前结点左孩子 
	struct BinTreeNode* right; // 指向当前结点右孩子 
	BTDataType data; // 当前结点值域 
} 
### 二叉树的数组存储实现 #### 使用数组存储二叉树的概念 二叉树可以通过数组来进行存储,这种方式特别适用于完全二叉树或接近完全二叉树的情况。对于一般的二叉树,如果存在缺失节点,则这些位置会在数组中用特定值(通常是`0`或其他特殊标记)填充[^1]。 #### 存储规则 当使用数组来表示一棵二叉树时,根节点位于索引为`1`的位置(假设基于1的索引)。对于任意给定的父节点i: - 左子节点存放在索引 `2*i` 处; - 右子节点存放在索引 `2*i + 1` 处; 这种映射关系使得通过简单的计算即可访问任何节点的孩子节点,从而简化了某些类型的遍历算法的设计和实现。 #### 示例代码展示如何构建并打印先序遍历的结果 下面是一个Python函数的例子,它接受一个列表作为输入参数,该列表代表按照上述规则编码后的二叉树,并返回其先序遍历序列: ```python def preorder_traversal(tree_array, index=1): result = [] if index >= len(tree_array) or tree_array[index] == 0: return [] # 访问当前节点 (Pre-order visit) result.append(tree_array[index]) # 遍历左子树 result.extend(preorder_traversal(tree_array, 2 * index)) # 遍历右子树 result.extend(preorder_traversal(tree_array, 2 * index + 1)) return result # 测试例子 test_cases = [ [None, 3, 1, 2], [None, 5, 1, 2, None, 4], [None, 13, 1, 2, 3, 4, None, 5, 6, 7, 8, None, None, 9, 10] ] for case in test_cases: print(' '.join(map(str, preorder_traversal(case)))) ``` 这段程序会输出与提供的测试案例相匹配的结果字符串,其中每个数字由单个空格分隔开来[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值