引言:
本实验报告旨在介绍机器学习中的两种经典算法:线性回归和k最近邻(kNN)算法。我们将详细说明这两种算法的原理和实现过程,并提供相应的源代码。线性回归是一种用于预测数值型输出的监督学习算法,而kNN算法则属于一种基于实例的学习方法,用于分类和回归问题。
一、线性回归算法
- 原理:
线性回归是一种通过拟合数据集中的线性模型来预测数值型输出的算法。其基本思想是找到一条最佳拟合直线,使得预测值与真实值之间的误差最小化。线性回归模型的表达式如下所示:
y = b0 + b1*x
其中,y是预测值,b0是截距,b1是斜率,x是输入特征。
- 实现:
下面是使用Python实现线性回归算法的示例代码:
import numpy as np
# 生成随机数据集
np.random