机器学习:线性回归与kNN算法实验报告

该报告深入探讨了机器学习中的线性回归和kNN算法,阐述了它们的原理和实现。线性回归通过寻找最佳拟合直线预测数值输出,kNN算法则基于实例学习,用于分类和回归,依赖于最近邻的距离计算。

引言:
本实验报告旨在介绍机器学习中的两种经典算法:线性回归和k最近邻(kNN)算法。我们将详细说明这两种算法的原理和实现过程,并提供相应的源代码。线性回归是一种用于预测数值型输出的监督学习算法,而kNN算法则属于一种基于实例的学习方法,用于分类和回归问题。

一、线性回归算法

  1. 原理:
    线性回归是一种通过拟合数据集中的线性模型来预测数值型输出的算法。其基本思想是找到一条最佳拟合直线,使得预测值与真实值之间的误差最小化。线性回归模型的表达式如下所示:
y = b0 + b1*x

其中,y是预测值,b0是截距,b1是斜率,x是输入特征。

  1. 实现:
    下面是使用Python实现线性回归算法的示例代码:
import numpy as np

# 生成随机数据集
np.random
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值