机器学习、深度学习常见名词清单(持续更新)

名词清单

目标检测学习

上采样、下采样

图像处理中的上、下采样
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:
- 使得图像符合显示区域的大小
- 生成对应图像的缩略图 

放大图像(或称为上采样(upsampling)或图像插值(interpolating))的主要目的是放大原图像,从而可以显示在更高分辨率的显示设备上。
机器学习中的上、下采样
上采样,对于一个不均衡的数据,让目标值(如0和1分类)中的样本数据量相同,以数据量多的一方的样本数量为标准,把样本数量较少的类的样本数量生成和样本数量多的一方相同,称为上采样

下采样,就是以数据量少的一方的样本数量为准。 CNN中,下采样就是池化的过程
下采样原理
对于一幅图像I尺寸为M*N,对其进行s倍下采样,即得到(M/s)*(N/s)尺寸的得分辨率图像,当然s应该是M和N的公约数才行,如果考虑的是矩阵形式的图像,就是把原始图像s*s窗口内的图像变成一个像素,这个像素点的值就是窗口内所有像素的均值
上采样原理
图像放大几乎都是采用内插值方法,即在原有图像像素的基础上在像素点之间采用合适的插值算法插入新的元素

训练误差

机器学习模型在训练数据集上表现的误差叫训练误差

泛化误差

机器学习模型在任意一个测试数据样本上表现出的误差的期望值,叫做泛化误差

过拟合/欠拟合

欠拟合(under-fitting): 机器学习模型无法得到较低的训练误差
过拟合(over-fitting): 机器学习模型的训练误差远远小于其在测试数据集上的误差
过拟合的解决方法
    1.数据清洗,得到较纯的数据。
    2.增加训练的数据量。
    3.采用正则化方法。

感受野

在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小。再通俗点的解释是,特征图上的一个点对应输入图上的区域。

滑动窗口/选择搜索

- 滑动窗口:
    首先对输入图像进行不同窗口大小的滑窗进行从左往右、从上到下的滑动。每次滑动时候对当前窗口执行分类器(分类器是事先训练好的)。如果当前窗口得到较高的分类概率,则认为检测到了物体。对每个不同窗口大小的滑窗都进行检测后,会得到不同窗口检测到的物体标记,这些窗口大小会存在重复较高的部分,最后采用非极大值抑制(Non-Maximum Suppression, NMS)的方法进行筛选。最终,经过NMS筛选后获得检测到的物体。
    滑窗法简单易于理解,但是不同窗口大小进行图像全局搜索导致效率低下,而且设计窗口大小时候还需要考虑物体的长宽比。所以,对于实时性要求较高的分类器,不推荐使用滑窗法
- 选择搜索:
    选择搜索算法的主要观点:图像中物体可能存在的区域应该是有某些相似性或者连续性区域的。因此,选择搜索基于上面这一想法采用子区域合并的方法进行提取bounding boxes候选边界框。首先,对输入图像进行分割算法产生许多小的子区域。其次,根据这些子区域之间相似性(相似性标准主要有颜色、纹理、大小等等)进行区域合并,不断的进行区域迭代合并。每次迭代过程中对这些合并的子区域做bounding boxes(外切矩形),这些子区域外切矩形就是通常所说的候选框。
	选择搜索优点:
  - 计算效率优于滑窗法。
  - 由于采用子区域合并策略,所以可以包含各种大小的疑似物体框。
  - 合并区域相似的指标多样性,提高了检测物体的概率。

RPN网络

- RPN全称是Region Proposal Network,Region Proposal的中文意思是“区域选取”,也就是“提取候选框”的意思,所以RPN就是用来提取候选框的网络
- RPN第一次出现在世人眼中是在Faster RCNN这个结构中,专门用来提取候选框,在RCNN和Fast RCNN等物体检测架构中,用来提取候选框的方法通常是Selective Search,是比较传统的方法,而且比较耗时,在CPU上要2s一张图。所以作者提出RPN,专门用来提取候选框,一方面RPN耗时少,另一方面RPN可以很容易结合到Fast RCNN中,称为一个整体。
- [链接](https://www.cnblogs.com/Terrypython/p/10584384.html)

Gamma变换

在图像处理中,将漂白(相机过曝)的图片或者过暗(曝光不足)的图片,进行修正,可以提高对比度。
Gamma校正是对输入图像灰度值进行的非线性操作,使输出图像灰度值与输入图像灰度值呈指数关系
伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于于相机过曝)情况下的图像增强效果明显

HOG特征

Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉、模式识别领域很常用的一种描述图像局部纹理的特征。这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了

Haar特征

Haar特征分为四类:边缘特征、线性特征、中心特征和对角线特征,将这些特征组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和‘减’去黑色矩形像素和。 Lienhart R.等对Haar-like矩形特征库作了进一步扩展,扩展后的特征大致分为4种类型:边缘特征、线特征环、中心环绕特征和对角线特征
Haar特征在一定程度上反应了图像灰度的局部变化,在人脸检测中,脸部的一些特征可由矩形特征简单刻画,例如,眼睛比周围区域的颜色要深,鼻梁比两侧颜色要浅等

NMS

非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口。NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪、数据挖掘、3D重建、目标识别以及纹理分析等

Soft-NMS

绝大部分目标检测方法,最后都要用到 NMS-非极大值抑制进行后处理。 通常的做法是将检测框按得分排序,然后保留得分最高的框,同时删除与该框重叠面积大于一定比例的其它框。
这种贪心式方法存在如下图所示的问题: 红色框和绿色框是当前的检测结果,二者的得分分别是0.95和0.80。如果按照传统的NMS进行处理,首先选中得分最高的红色框,然后绿色框就会因为与之重叠面积过大而被删掉。
另一方面,NMS的阈值也不太容易确定,设置过高又容易增大误检。
所以对于NMS提出了一些改进,思路:不要粗鲁地删除所有IOU大于阈值的框,而是降低其置信度。叫做soft-NMS

IOU

IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。

SoftMax

在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。
首先我们简单来看看softmax是什么意思。顾名思义,softmax由两个单词组成,其中一个是max。对于max我们都很熟悉,比如有两个变量a,b。如果a>b,则max为a,反之为b。用伪码简单描述一下就是 if a > b return a; else b。
另外一个单词为soft。max存在的一个问题是什么呢?如果将max看成一个分类问题,就是非黑即白,最后的输出是一个确定的变量。更多的时候,我们希望输出的是取到某个分类的概率,或者说,我们希望分值大的那一项被经常取到,而分值较小的那一项也有一定的概率偶尔被取到,所以我们就应用到了soft的概念,即最后的输出是每个分类被取到的概率

LPN

LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法。这个函数很少使用,基本上被类似DROPOUT这样的方法取代,见最早的出处AlexNet论文对它的定义, 《ImageNet Classification with Deep ConvolutionalNeural Networks》

正则化、标准化、归一化

正则化(Regularization):
    用一组与原不适定问题相“邻近”的适定问题的解,去逼近原问题的解,这种方法称为正则化方法。如何建立有效的正则化方法是反问题领域中不适定问题研究的重要内容。通常的正则化方法有基于变分原理的Tikhonov 正则化、各种迭代方法以及其它的一些改进方法。
    
归一化(Normalization):
    1.把数据变为(0,1)之间的小数。主要是为了方便数据处理,因为将数据映射到0~1范围之内,可以使处理过程更加便捷、快速。
    2.把有量纲表达式变换为无量纲表达式,成为纯量。经过归一化处理的数据,处于同一数量级,可以消除指标之间的量纲和量纲单位的影响,提高不同数据指标之间的可比性。

标准化(Standardization):
    数据的标准化是将数据按比例缩放,使之落入一个小的特定区间

总的来说,归一化是为了消除不同数据之间的量纲,方便数据比较和共同处理,比如在神经网络中,归一化可以加快训练网络的收敛性;标准化是为了方便数据的下一步处理,而进行的数据缩放等变换,并不是为了方便与其他数据一同处理或比较,比如数据经过零-均值标准化后,更利于使用标准正态分布的性质,进行处理;正则化而是利用先验知识,在处理过程中引入正则化因子(regulator),增加引导约束的作用,比如在逻辑回归中使用正则化,可有效降低过拟合的现象

padding

GD、BGD、SGD

GD: Gradient Descent,梯度下降
BGD:Batch Gradient Descent,批量梯度下降
SGD:Stochastic Gradient Descent,随机梯度下降

超参数

在我们的机器学习算法中,有一类参数,需要人工进行设定,我们称之为“超参”,也就是算法中的参数,比如学习率、正则项系数或者决策树的深度等

ROC曲线

ROC(receiver operating characteristic)接受者操作特征,其显示的是分类器的真正率和假正率之间的关系
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值