零、概念
1.什么是会议和期刊?
会议比期刊接收速度更快,会议半年,期刊一年以上。
对于计算机这样快速迭代的行业,一般都是投顶级会议。
(1)会议
会议论文指的是以被会议接受为目标而撰写的文章。
会议每年一次或两年一次,展示方式有口头报告、海报展示或现场讨论。
会议论文通常以文集的形式出版,称为“会议论文集”,可由大学出版社、专业组织、知名出版商或网络出版。
(2)期刊
期刊论文指的是发表在某一期期刊上的文章。
期刊论文一般审稿时间较长。会议是一种创新形式,也可以说是先稿。而期刊论文发出来的是你这个阶段已经完成了的作品,不是一个想法的展现和探讨,要有比会议论文更全面、更深入的研究。
(3)期刊与会议的比较:会议 > 期刊
在计算机领域,一般会议会比期刊好点,原因有如下两点:
①会议审稿周期短,很多计算机方面的应用,更新非常快,期刊动辄几个月,等发表了实效性都过了可能。
②会议参与人多,传播力度大,你的工作可以很快就被所有人知晓,便于成果交流。
所以在计算机领域,会议的认可度比期刊要高,好的工作一般优先考虑投顶会。
2.什么是CCF分级
CCF即中国计算机学会 (China Computer Federation)。CCF统计了计算机方面各领域的期刊和会议的影响力,于2019年发布,其将这些论文分为A、B、C三级,其中A类最优,B、C次之。
一、顶级会议
(一)计算机视觉领域
顶级会议:CVPR、ICCV、ECCV、NeurIPS、ICML、ICLR [CCF里暂没有的顶会]
还不错的会议:AAAI(A类)、IJCAI(A类)、ACM MM(A类)
认可度还行的会议:WACV、BMVC(C类)、ACCV(C类)
CVPR: International Conference on Computer Vision and Pattern Recognition
ICCV: International Conference on Computer Vision
ECCV: European Conference on Computer Vision
ICIP: International Conference on on Image Processing
ICPR:International Conference on Pattern Recognition
ACCV: Asia Conference on Computer Vision
1.CVPR (国际计算机视觉与模式识别会议)
CVPR (IEEE Conference on Computer Vision and Pattern Recognition)
即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。这是一个一年一次的会议,举办地从来没有出过美国。正如它的名字一样,这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。
目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议。
CVPR是计算机视觉领域的顶级会议之一,由IEEE计算机学会主办。它每年举办一次,集中展示计算机视觉、图像处理、模式识别等相关领域的前沿研究成果。CVPR吸引了全球的学者、企业和研究机构参与。
发表的论文代表了该领域的前沿水平。它吸引了大量的学术和工业界人士。CVPR录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。
2.ICCV (国际计算机视觉大会)
ICCV 的全称是 IEEE International Conference on Computer Vision,即国际计算机视觉大会,由IEEE主办,被澳大利亚ICT学术会议排名和中国计算机学会等机构评为最高级别学术会议,在业内具有极高的评价。ICCV论文录用率非常低,是三大会议中公认级别最高的。ICCV会议时间通常在四到五天,相关领域的专家将会展示最新的研究成果。
3.ECCV (欧洲计算机视觉国际会议)
ECCV的全称是European Conference on Computer Vision(欧洲计算机视觉国际会议) ,两年一次。每次会议在全球范围录用论文300篇左右,主要的录用论文都来自美国、欧洲等顶尖实验室及研究所,中国大陆的论文数量一般在10-20篇之间。ECCV2010的论文录取率为27%。
4.ICIP
ICIP (International Conference on on Image Processing,图像处理国际会议)
5.ICPR
ICPR (International Conference on Pattern Recognition,模式识别国际会议)
6.ACCV
ACCV (Asia Conference on Computer Vision,计算机视觉亚洲会议)
(二)机器学习领域
1.NeurIPS
NeurIPS (Conference on Neural Information Processing Systems)
全称为神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是机器学习领域的顶级国际会议之一。
NeurIPS是机器学习和人工智能领域的顶级会议之一,涵盖了神经网络、深度学习、强化学习、统计学习等众多主题。NeurIPS的历史悠久,吸引了全球学者和行业领袖,是该领域最重要的学术平台之一。
优点:
跨学科的广泛影响:NeurIPS不仅仅关注机器学习,还涵盖了计算机视觉、自然语言处理、强化学习、神经科学等多个学科领域,具有非常广泛的跨学科影响。
前沿性强:NeurIPS展示的是最前沿的科研成果,许多深度学习和AI的突破性进展都是在这里首次发布的。
顶尖的研究者和参与者:该会议吸引了全球顶尖学者、企业界领袖和研究机构,研究内容质量高,学术氛围浓厚。
缺点:
竞争激烈:NeurIPS的录取率非常低,尤其是近年来随着人工智能的快速发展,提交的论文数量急剧增加,导致竞争非常激烈。
审稿严格:NeurIPS对论文的审稿标准非常高,论文质量和创新性必须达到极高的标准,审核过程十分严格。
总体来说,NeurIPS是机器学习和人工智能领域的顶级学术会议,其影响力和学术水平与CVPR相当,很多重大突破都在此发布。
NeurIPS:是机器学习和人工智能领域最具影响力的会议之一,涵盖的主题广泛,影响力大。它的创新性和学术性也非常强,通常会发布一些前瞻性和具有革命性的研究成果。
2.ICLR:表征学习
ICLR (International Conference on Learning Representations) 是机器学习领域的顶级会议之一,专注于深度学习、表示学习、生成模型、强化学习等相关主题。ICLR首次举办于2013年,近年来已经成为与 NeurIPS 和 ICML 并列的三大机器学习会议之一。
优点:
高水平的学术交流:ICLR聚集了来自全球顶尖学者、研究机构和企业的贡献,是机器学习和人工智能领域的一个重要学术平台。
开放审稿机制:ICLR的开放审稿机制增强了透明度和互动性,论文的评审过程更加公开、透明,作者和审稿人之间可以进行更好的沟通和反馈。
前沿性强:ICLR非常注重深度学习和表示学习的创新,许多重要的技术和方法都在此首度亮相。
缺点:
竞争激烈:与NeurIPS、ICML等会议一样,ICLR的接收率很低,录取的论文必须在创新性、理论性和应用性方面都有显著贡献。
专注深度学习:虽然ICLR涵盖了多个领域,但它的重点仍然是深度学习和表示学习领域,可能不如其他会议那样广泛关注不同的机器学习方法。
ICLR与其他顶级会议的对比:
(1)与NeurIPS:ICLR更专注于深度学习和表示学习,而NeurIPS则更加广泛,涉及的主题从强化学习到计算神经科学、机器人学等都有涉及。NeurIPS是机器学习领域的顶级会议之一,ICLR的影响力近年来在深度学习领域的专业性上逐渐接近NeurIPS。
(2)与ICML:ICML同样是机器学习领域的权威会议,ICML的内容涉及的主题更加广泛,包括统计学习、生成模型、强化学习等多个领域。ICLR则专注于深度学习的最新进展,因此它在深度学习领域的影响力相较于ICML会更强。
3.ICML
ICML(International Conference on Machine Learning,国际机器学习会议)
涵盖机器学习各个方面的研究。
自1980年起每年举办,由国际机器学习学会(International Machine Learning Society,IMLS)主办。ICML是机器学习领域历史最悠久、规模最大、影响广泛的会议之一。
(三)人工智能领域
1.AAAI
AAAI (AAAI Conference on Artificial Intelligence,人工智能促进协会年会)
由AAAI主办,每年举办一次,涵盖人工智能的各个方面。出版社:AAAI
2.IJCAI
IJCAI (International Joint Conference on Artificial Intelligence,国际人工智能联合会议)
每两年举办一次,是人工智能领域的重要国际会议。
(四)自然语言处理
顶级会议:ACL、NAACL、EMNLP
顶级期刊:CL、TACL
还不错的会议:AAAI、IJCAI、SIGKDD、SIGIR、WWW、EACL
1.ACL
ACL (Annual Meeting of the Association ofr COmputational Linguistics)
(五)计算机图形学与图形处理
1.ACM MM
ACM MM (ACM International Conference on Multimedia)
出版社:ACM
2.SIGGRAPH
SIGGRAPH (ACM SIGGRAPH Annual Conference)
出版社:ACM
3.VR
VR (IEEE Virtual Reality)
出版社:IEEE
4.IEEE VIS
IEEE VIS (IEEE Visualization Conference)
出版社:IEEE
(六)计算机系统与网络领域
1.ACM SIGCOMM
ACM SIGCOMM: 计算机网络领域的顶级会议,专注于网络架构和协议。
2.USENIX NSDI
USENIX NSDI(网络系统设计与实现会议): 计算机网络领域公认的顶级学术会议,主要聚焦于网络系统的设计和实现。
二、顶级期刊
(一)计算机视觉领域
TPAMI: IEEE Trans on Pattern Analysis and Machine Intelligence
IJCV: International Journal of Computer Vision
TIP: IEEE Transactions on Image Processing
TNNLS: IEEE Transactions on Neural Networks and learning systems
Pattern Recognition
1.TPAMI
IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI): IEEE出版的期刊,是模式识别和机器学习领域最重要的学术期刊之一。
2.IJCV
International Journal of Computer Vision(IJCV): 专注于计算机视觉领域的高水平期刊。
(二)人工智能领域
1.AI
AI (Artificial Intelligence),出版社 Elsevier
2.JMLR
JMLR (Journal of Machine Learning Research),出版社 MIT Press
1.JAIR
Journal of Artificial Intelligence Research(JAIR): 涵盖人工智能各个领域的高水平期刊。
2.AIJ
Artificial Intelligence Journal: 专注于人工智能领域的顶级期刊。
(三)计算机图形学与图像处理领域
1.TIP
TIP(Transactions on Image Processing)是一个期刊,属于IEEE出版的顶级期刊之一,主要关注图像处理领域的研究成果。它是图像处理学科的顶刊之一,具有很高的影响力和学术地位。
TIP是同行评审的期刊,通常发表一些具有创新性、深度的研究论文,因此它的学术影响力较大,通常被视为图像处理领域的顶级期刊之一。
2.TOG
TOG (ACM Transactions on Graphics)
出版社:ACM
3.TVCG
TVCG (IEEE Transactions on Visualization and Computer Graphics)
出版社:IEEE
(四)计算机系统与网络领域
1.TOCS
ACM Transactions on Computer Systems(TOCS): 计算机系统领域的顶级期刊,涵盖系统架构和操作系统等方面。
2.TON
IEEE/ACM Transactions on Networking(TON): 专注于计算机网络领域的高水平期刊。
三、论文平台
1.arXiv
arXiv是一个开放获取的论文预印本平台,允许研究人员在正式提交到期刊或会议之前,将其研究论文上传到该平台。它涵盖了物理学、数学、计算机科学、统计学等多个学科。特别是在计算机科学和人工智能领域,arXiv是最常用的发布预印本的地方。
优点:
开放获取:任何人都可以免费访问和下载论文,促进了知识的共享。
快速传播:研究人员可以快速分享最新的研究成果,无需等待正式期刊审稿过程。
广泛引用:由于开放性,arXiv上的论文经常会被同行引用,能够加速学术交流
缺点:
未经同行评审:arXiv上的论文大多数是未经同行评审的预印本,因此不能保证其质量。
未经筛选:一些低质量或未完成的工作也可能上传,导致信息过载。
总体来说,arXiv是一个非常有用的学术资源,尤其对于需要快速传播最新研究的领域(如计算机视觉和深度学习)非常重要。
arXiv:是一个开放的预印本平台,适合快速发布和获取最新的研究成果,尤其是在计算机视觉、深度学习等领域,大家可以通过它跟踪最新的学术动态。
arXiv(发音为 “archive”)是一个免费的预印本存储库,专门用于存储科学论文和研究报告。它涵盖了多个学科领域,包括物理学、数学、计算机科学、统计学、量子物理学等。
arXiv 不是传统意义上的期刊或会议,而是一个开放的、由学术社区主办的在线平台,供科研人员分享他们的研究成果。在该平台上,研究者可以上传他们的预印本(preprint),即在论文正式发表前,公开分享他们的研究结果。这使得其他研究者可以尽早阅读并评论这些结果,也有助于加速科学发现的传播。
arXiv是期刊还是会议?
arXiv不是期刊或会议,它是一个预印本平台,因此并不是正式的同行评审出版物。上传到arXiv的论文可以是从会议论文到期刊文章,或者是完全独立的研究工作。
期刊:arXiv上的论文一般在正式提交期刊前被上传,但这些论文本身没有经过同行评审。在正式发表时,期刊会对论文进行严格的同行评审,并可能对论文进行修改。
会议:一些会议(尤其是在计算机科学领域)鼓励研究者先将他们的论文提交到arXiv,以便其他研究者在会议前就可以接触到最新的研究成果。
arXiv的学术地位:
尽管arXiv上的论文没有经过正式的同行评审,但它已经成为很多领域,特别是在物理学、计算机科学、数学等领域的重要学术资源。许多科研人员会首先将他们的工作上传到arXiv,以便在正式发表前获得社区的反馈,或作为证明他们研究工作早期的公开记录。
2.dblp
网址:dblp.org
3.Papers With Code
四、SCI
1.SCI
Science Citation Index,简称 SCI,由美国科学信息研究所(Institute for Scientific Information, 简称 ISI)在美国费城创办的引文数据库,创始人为情报专家尤金·加菲尔德。目前SCI由信息提供商汤森路透公司(Thomson Reuters)负责运营。
世界著名的三大科学统计与科学评价检索系统——SCI(科学引文索引)、EI(工程索引)、ISTP(科技会议录索引)中,SCI 最为重要。被SCI收录的学术期刊称为SCI期刊,收录于SCI期刊的科技论文称为SCI论文。它以布拉德福(S. C. Bradford)文献离散律理论、以加菲尔德(E. Garfield)引文分析理论为主要基础,通过论文的被引用频次等的统计,对学术期刊和科研成果进行多方位的评价研究,从而评判一个国家或地区、科研单位、高校、期刊、个人的科研产出绩效,来反映其在国际上的学术水平。
加菲尔德(E. Garfield)引文分析理论是怎么来的?
要说清楚这个事情,先要了解文献与文献之间的关系。首先要知道,几乎没有一篇文章是独立存在的,里面有一部分重要的内容就是“参考文献(References)”,这让科学研究以“站在巨人的肩膀上”快速方展。所以文章与文章之间就有了错综复杂相互引用的关系,就好像Facebook上的人际关系网一样,文章之间也有引用关系网,总结起来有四种关系:1.你引用我(Cited)2.你被我引用(Citing)3.咱俩互不引用但说的事儿相关(Relavant)4.完全没关系
然后加菲尔德(E. Garfield)就这些关系提出了一种新的研究理论,利用文章间的引用关系可以对一个Idea做三个维度的扩展研究。
比如你先找到了一篇你认为非常感兴趣的文章A,发现A引用B,B又引用了C … 这个维度就是“越查越深(早)”(也就是这篇文章的引文);
如果发现从A被B引用,B又被C引用…这个维度就是“越查越新”(施引);
如果发现A与B、C都没有互引但很相关,这个维度就是“越查越广”。
这三个维度很好地保证了科研的完整性,所以基于这个理论,加菲尔德(E. Garfield)搞了个机构叫ISI(美国科学信息研究所),把论文的引用关系梳理清楚,大大地提高了科研人员的研究效率。
这就不得不说大名鼎鼎的数据库就叫“Web of Science”,里面按学科和类型分了好几个库,期刊方面有:
理工科的叫SCI(Science Citation Index,科学引文索引)
社会科学的叫SSCI(Social Sciences Citation Index,社会科学引文索引)
艺术人文的叫AHCI(Arts & Humanities Citation Index,艺术与人文引文索引)
还有其它的比如会议录文献的库就不在这里说了,大家上官网都可以查到。所以你所知道SCI只是其中一个理工科期刊的引文关系数据库。
2.影响因子 IF
ISI(美国科学信息研究所)在早期把这些引用关系进行了排名,基于“谁被引用得多,谁的质量就高”这种想法,创立了一个概念叫“影响因子”。
具体来说,影响因子 (Impact Factor,IF) 是汤森路透(Thomson Reuters)出品的期刊引证报告(Journal Citation Reports,JCR)中的一项数据。
影响因子=前两年所发论文在第三年被引用次数/该期刊前两年发表论文总数。
影响因子实质上是期刊论文的平均被引率,用来衡量期刊的质量(是衡量期刊的,也就是你论文发表的位置的)和影响力。影响因子的高低,不仅取决于期刊论文被引用次数的多少,也取决于期刊所发表论文的数量。影响因子一般取值范围为1~5,呈动态变化。
然后把引用量最高的期刊分不同学科做了一个排行榜,这就形成了“核心期刊”的概念,你经常听到的“SCI核心期刊”就是在Web of Science中,理工科领域被引用次数最多的一些期刊(注意是期刊不是文章)。
总结一下:
①文献与文献之间存在相互引用的关系
②Web of Science基于这种关系做了一个数据库,可以从深、新、广三个维度查文献,SCI是其中一个理工科集合
③在这个数据库里按引用量做了一个排行榜,产生了“核心期刊”的概念,这个概念被中国学术界广泛和过度的运用。
最后再提醒一点,Web of Science数据库最大地价值是用三个维度查找相关文献来做科研,而不是查“核心期刊”。
本来影响因子只是评价期刊的一个指标,后来南京大学有一个老师就在国内大力推崇这种评价体系,导致后来发SCI期刊文章成了评职称的重要甚至唯一指标,用着用着被妖魔化了,出了好多技巧专门研究怎么发SCI论文,有相当一部分违背了科学研究的本意。现在国外早已不再使用SCI为单一指标来评价学术,还会考虑比如社交媒体的影响力。
3.SCI分区
汤森路透JCR分区将把某一个学科的所有期刊都按照上一年的影响因子降序排列,然后平均4等分(各25%),分为Q1 (1%-25%),Q2 (26%-50%),Q3 (51%-75%),Q4 (76%-100%)。
中科院JCR分区表根据该SCI期刊的三年平均IF,先将SCI期刊按照所属领域分为14个大类和176个小类,再将同一学科所有期刊按照该年的IF降序排列,分为一区 (1%-5%),二区 (6%-20%),三区 (21%-50%),四区 (51%-100%)。中科院一区的也是Top期刊,一般而言,发表在一区和二区的SCI论文,通常被认为是该学科领域的比较重要的成果。
五、核心期刊
中国采用的核心有多种,其中最受认可的是三大核心期刊:
①北京大学图书馆“中文核心期刊”
②南京大学“中文社会科学引文索引(CSSCI)来源期刊”
③中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”)
其中以中文核期刊和科技核心期刊认可度最高,晋升职称常说的核心也指的是这两种,如果一个期刊同时被这两家机构评为核心就称为双核心。CSSCI每两年评选一次,而北大核心每四年评选一次。
六、参考文章
1.计算机领域的顶会、顶刊:https://blog.csdn.net/qq_31149715/article/details/109021784
1.计算机领域顶会顶刊梳理:https://zhuanlan.zhihu.com/p/397836746
2.科普|人工智能顶会、顶刊,SCI、IF、核心、分区,这些都是啥:https://zhuanlan.zhihu.com/p/591309997