读论文篇:
1、基于改进水云模型和Radarsat-2数据的农田含水量估算 2016 杨贵军 农工学报
概述:杨贵军等通过将水云模型中的植被参数改为雷达植被参数,利用全极化数据直接反演土壤含水量,发现改进的雷达植被指数模型精度高于原叶面积指数模型,且改进的雷达植被指数模型可以在多个生育期内对农田土壤含水量进行反演;
结构:在笔记<三>中已经写过;此处记忆错乱;
2、基于Sentinel-1的绿洲区域尺度土壤水分微波建模 王娇 2017 红外与毫米波学报
概述:王娇等采用AIEM模型对稀疏植被覆盖下研究区建立地表微波散射特征数据库,分析后向散射系数对土壤含水量、地表粗糙度的响应关系,结果表明两者与后向散射系数均呈现为对数关系,在此基础上构建干旱区土壤水分模型,模型结果表示:对于0-10cm表层土壤水分,模拟值同实测值的相关系数达到0.76,在干旱区绿洲区域尺度上的土壤水分监测具有适用性。
结构:
1、AIEM原理分析,此处不做解释,以后有时间专门开一篇解释;作者进行模型模拟时的参数设置似乎是经验值,如温度T,可通过实测均值或者中位数代替;砂土含量S,粘土含量C,此处可通过全国土壤数据集进行得到;土壤容重ρ,基本是定值;步长,和按照步长分布的土壤含水量模拟值计算得到的土壤介电常数,此处常用dobson的修正模型计算,后续有时间解释;粗糙度参数s,l以及组合粗糙度,一般通过实测或者数据集得到,也需要开一篇文章分析;
2、后向散射系数与地表粗糙度、土壤含水量的响应关系
通过上一步的模拟结果,对着三个指标进行建模分析,可得:
a)模拟的后向散射系数与土壤含水量呈现对数关系
b)与地表粗糙度也呈现对数关系,经过前人Zribi的研究结果,通过Zs=s^2/l构建组合粗糙度,表现出其与垂直极化(vv)下的两个不同入射角的后向散射系数差的对数关系,进而估算出Zs
3、土壤水分建模
根据响应关系建立土壤水分同后向散射系数的关系:
反解求出Mv的对应表达式,通过不同入射角条件下进行模拟和非线性回归分析,得到A、B、C三个参数的具体数值表达式,进而得到在不同入射角条件下的方程模型,得到土壤水分值。
3、基于Sentinel-1及Landsat8数据的黑河中游农田土壤水分估算 王树果 2020 遥感技术与应用
概述:王树果等结合OH、水云模型和复型洗牌全局优化算法,通过迭代算法进行了土壤水分和地表粗糙度的联合反演,结果表明反演结果与地面观测具有良好的一致性,决定系数R^2均在0.7以上,其中基于NDWI的植被含水量反演效果最佳。
结构:暂时不想写,意义不是很大,元旦之后更一下。