说明
本部分内容大部分都比较简单,在此主要是联系一下可视化的操作
直方图
本次采用的数据如下:
最后生成结果:
代码如下:
load data.txt;
high=data(:,1:2:9);high=high(:);
weight=data(:,2:2:10);weight=weight(:);
[n1,x1]=hist(high)
[n2,x2]=hist(weight)
subplot(1,2,1), hist(high)
subplot(1,2,2), hist(weight)
统计中常用概念
- 中位数:是将数据由小到大排序后位于中间位置的那个数值,Matlab 中mean(x)返回x 的均值,median(x)返回中位数。
- 标准差 s:是各个数据与均值偏离程度的度量,这种偏离不妨称为变异。
- 方差:是标准差的平方s2。
- 极差:最大值与最小值之差。
- Matlab 中std(x)返回x 的标准差,var(x)返回方差,range(x)返回极差。
- Matlab 中moment(x,order)返回x 的order 阶中心矩,order 为中心矩的阶数。
skewness(x)返回x 的偏度,kurtosis(x)返回峰度。
统计中几个重要的概率分布
- 正态分布:神一样的分布,不解释。
- t 分布:误差求解中经常用,将其试验次数推向正无穷,就是正态分布
- F 分布:接触较少,后来再补充。
matlab做分布的可视化
参数估计
参数估计又是数学建模中的一大块,我们可以通过总体观察也好,理论分析也好,我们往往能够确定我们研究对象分布的形式,但我们并不能够确定参数,此一块,就是为了解决此种问题的。
点估计
点估计是用样本统计量确定总体参数的一个数值。评价估计优劣的标准有无偏性、最小方差性、有效性等,估计的方法有矩法、极大似然法等。
最常用的是对总体均值μ 和方差σ 2(或标准差σ )作点估计。让我们暂时抛开评
价标准,当从一个样本按照式(1)、(2)算出样本均值x 和方差s2后,对μ 和σ 2(或σ )一个自然、合理的点估计显然是(在字母上加^表示它的估计值)
μˆ = x ,σˆ 2 = s2, σˆ = s
区间估计
点估计虽然给出了待估参数的一个数值,却没有告诉我们这个估计值的精度和可信程度。一般地,总体的待估参数记作θ (如 2 ,σ μ ),由样本算出的θ 的估计量记作 θˆ ,人们常希望给出一个区间,使θ 以一定的概率落在此区间内。
参数估计的matlab实现
假设检验
统计推断的另一类重要问题是假设检验问题。在总体的分布函数完全未知或只知其形式但不知其参数的情况,为了推断总体的某些性质,提出某些关于总体的假设。例如,提出总体服从泊松分布的假设,又如对于正态总体提出数学期望等于
μ0 的假设等。假设检验就是根据样本对所提出的假设做出判断:是接受还是拒绝。这就是所谓的假设检验问题。
- 在Matlab 中t 检验法由函数ttest 来实现,命令为[h,p,ci]=ttest(x,mu,alpha,tail)
- 还可以用t 检验法检验具有相同方差的2 个正态总体均值差的假设。在Matlab 中
由函数ttest2 实现,命令为:[h,p,ci]=ttest2(x,y,alpha,tail)与上面的ttest 相比,不同处只在于输入的是两个样本x,y(长度不一定相同),而不是一个样本和它的总体均值;tail 的用法与ttest 相似,可参看帮助系统。