1.数据统计描述与分析
标题像一本书的名字,感觉好厉害有没有,没有,跟数理统计差不多。方法要用matlab的statistic工具箱。包括均值啊方差啊直方图啊概率分布,这里介绍一下假设检验(就因为我不太会)。
1.1 σ^2 已知,关于 μ 的检验( Z 检验)
在 Matlab 中 Z 检验法由函数 ztest 来实现,命令为[h,p,ci]=ztest(x,mu,sigma,alpha,tail),其中输入参数 x 是样本,mu 是 H0 中的 μ0 ,sigma 是总体标准差σ ,alpha 是显著性水平α (alpha 缺省时设定为 0.05),tail 是对备选假设 H1 的选择: H1 为 μ ≠ μ0 时用 tail=0(可缺省); H1 为 μ > μ0 时用 tail=1; H1 为 μ < μ0 时用 tail=-1。输出参数 h=0 表示接受 H0 ,h=1 表示拒绝 H0 ,p 表示在假设 H0 下样本均值出现的概率,p越小 H0 越值得怀疑,ci 是 μ0 的置信区间。
例:某车间用一台包装机包装糖果。包得的袋装糖重是一个随机变量,它服从正
态分布。当机器正常时,其均值为 0.5 公斤,标准差为 0.015 公斤。某日开工后为检验包装机是否正常,随机地抽取它所包装的糖 9 袋,称得净重为(公斤):
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512,问机器是否正常?
解 总体σ 已知, x ~ N(μ,0.0152 ) , μ 未知。 于是提出假设 H0 : μ = μ0 = 0.5和
: 0.5,H1:μ ≠ 0.5。
x=[0.497 0.506 0.518 0.524 0.498...
0.511 0.520 0.515 0.512];
[h,p,ci]=ztest(x,0.5,0.015)
h =
1
p =
0.0248
ci =
0.5014 0.5210
h=1,拒绝原假设。
1.2 σ2 未知,关于 μ 的检验( t 检验)
在 Matlab 中t 检验法由函数 ttest 来实现,命令为
[h,p,ci]=ttest(x,mu,alpha,tail).例:
某种电子元件的寿命 x (以小时计)服从正态分布, μ,σ 2 均未知.现得 16 只元件的寿命如下:
159 280 101 212 224 379 179 264
222 362 168 250 149 260 485 170
问是否有理由认为元件的平均寿命大于 225(小时)?
解:按题意需检验,H0 : μ ≤ μ0 = 225, H1 : μ &g