1.2:无监督学习导学

无监督学习的目标:

利用无标签的数据学习数据的分部或数据与数据之间的关系被称作无监督学习。

无监督学习最常应用的场景是聚类降维

聚类

定义

  1. 聚类(clustering),就是根据数据的“相似性”将数据分为多类的过程。
  2. 评估两个不同样本之间的“相似性” ,通常使用的方法就是计算两个样本之间的“距离”。使用不同的方法计算样本间的距离会关系到聚类结果的好坏。
  3. 什么样的数据是相似的,如何定义相似性,是很多机器学习任务的基本问题。

常用距离计算方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值