题目
东东有一个二阶魔方,即2×2×2的一个立方体组。立方体由八个角组成。
魔方的每一块都用三维坐标(h, k, l)标记,其中h, k, l∈{0,1}。六个面的每一个都有四个小面,每个小面都有一个正整数。
对于每一步,东东可以选择一个特定的面,并把此面顺时针或逆时针转90度。
请你判断,是否东东可以在一个步骤还原这个魔方(每个面没有异色)。
输入输出
Input
输入的第一行包含一个整数N(N≤30),这是测试用例的数量。
对于每个测试用例,
第 1~4 个数描述魔方的顶面,这是常见的2×2面,由(0,0,1),(0,1,1),(1,0,1),(1,1,1)标记。四个整数对应于上述部分。
第 5~8 个数描述前面,即(1,0,1),(1,1,1),(1,0,0),(1,1,0)的公共面。四个整数
与上述各部分相对应。
第 9~12 个数描述底面,即(1,0,0),(1,1,0),(0,0,0),(0,1,0)的公共面。四个整数与上述各部分相对应。
第 13~16 个数描述背面,即(0,0,0),(0,1,0),(0,0,1),(0,1),(0,1,1)的公共面。四个整数与上述各部分相对应。
第 17~20 个数描述左面,即(0,0,0),(0,0,1),(1,0,0),(1,0,1)的公共面。给出四个整数与上述各部分相对应。
第 21~24 个数描述了右面,即(0,1,1),(0,1,0),(1,1,1),(1,1,0)的公共面。给出四个整数与上述各部分相对应。
换句话说,每个测试用例包含24个整数a、b、c到x。你可以展开表面以获得平面图
如下所示。
Output
对于每个测试用例,魔方如果可以至多 “只转一步” 恢复,输出YES,则输出NO。
友情提示:如果能思考一下解题框架的设计是最好的,一上来就莽很痛苦
Sample Input
4
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
6 6 6 6 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 4 4 4 4
1 4 1 4 2 1 2 1 3 2 3 2 4 3 4 3 5 5 5 5 6 6 6 6
1 3 1 3 2 4 2 4 3 1 3 1 4 2 4 2 5 5 5 5 6 6 6 6
Sample Output
YES
YES
YES
NO
思路分析
这道题考试期间没写出来,补题的时候借助同学的思路简单概括一下:
因为只能转一步,所以可能有12种情况;又因为前面顺时针和后面逆时针转得到的状态相同,因此只需考虑6种情况。
分别有
AFCE转动 BD不动
ABCD转动 EF不动
EBFD转动 AC不动
AC代码
#include<iostream>
using namespace std;
int t;
int a[4],b[4],c[4],d[4],e[4],f[4];
int main(){
cin>>t;
while(t--){
for(int i=0;i<4;i++)
cin>>a[i];
for(int i=0;i<4;i++)
cin>>b[i];
for(int i=0;i<4;i++)
cin>>c[i];
for(int i=0;i<4;i++)
cin>>d[i];
for(int i=0;i<4;i++)
cin>>e[i];
for(int i=0;i<4;i++)
cin>>f[i];
int key=0;
if(b[0]==b[1]&&b[1]==b[2]&&b[2]==b[3]&&a[0]==a[1]&&a[1]==a[2]&&a[2]==a[3]&&c[0]==c[1]&&c[1]==c[2]&&c[2]==c[3]&&d[0]==d[1]&&d[1]==d[2]&&d[2]==d[3]&&e[0]==e[1]&&e[1]==e[2]&&e[2]==e[3]&&f[0]==f[1]&&f[1]==f[2]&&f[2]==f[3]){
key=1;
}
//AFCE
if(a[0]==a[1]&&a[1]==f[2]&&f[2]==f[3]&&f[0]==f[1]&&f[1]==c[0]&&c[0]==c[1]&&c[2]==c[3]&&c[3]==e[2]&&e[2]==e[3]&&e[0]==e[1]&&e[1]==a[2]&&a[2]==a[3]&&d[0]==d[1]&&d[1]==d[2]&&d[2]==d[3]&&b[0]==b[1]&&b[1]==b[2]&&b[2]==b[3]){
key=1;
}
if(a[0]==a[1]&&a[1]==e[2]&&e[2]==e[3]&&e[0]==e[1]&&e[1]==c[0]&&c[0]==c[1]&&c[2]==c[3]&&c[3]==f[2]&&f[2]==f[3]&&f[0]==f[1]&&f[1]==a[2]&&a[2]==a[3]&&d[0]==d[1]&&d[1]==d[2]&&d[2]==d[3]&&b[0]==b[1]&&b[1]==b[2]&&b[2]==b[3]){
key=1;
}
//ABCD
if(a[0]==a[2]&&a[2]==b[1]&&b[1]==b[3]&&b[0]==b[2]&&b[2]==c[1]&&c[1]==c[3]&&c[0]==c[2]&&c[2]==d[1]&&d[1]==d[3]&&d[0]==d[2]&&d[2]==a[1]&&a[1]==a[3]&&e[0]==e[1]&&e[1]==e[2]&&e[2]==e[3]&&f[0]==f[1]&&f[1]==f[2]&&f[2]==f[3]){
key=1;
}
if(a[0]==a[2]&&a[2]==d[1]&&d[1]==d[3]&&d[0]==d[2]&&d[2]==c[1]&&c[1]==c[3]&&c[0]==c[2]&&c[2]==b[1]&&b[1]==b[3]&&b[0]==b[2]&&b[2]==a[1]&&a[1]==a[3]&&e[0]==e[1]&&e[1]==e[2]&&e[2]==e[3]&&f[0]==f[1]&&f[1]==f[2]&&f[2]==f[3]){
key=1;
}
//EBFD
if(b[0]==b[1]&&b[1]==f[3]&&f[3]==f[1]&&f[0]==f[2]&&f[2]==d[0]&&d[0]==d[1]&&d[2]==d[3]&&d[3]==e[0]&&e[0]==e[2]&&e[1]==e[3]&&e[3]==b[2]&&b[2]==b[3]&&a[0]==a[1]&&a[1]==a[2]&&a[2]==a[3]&&c[0]==c[1]&&c[1]==c[2]&&c[2]==c[3]){
key=1;
}
if(b[0]==b[1]&&b[1]==e[0]&&e[0]==e[2]&&e[1]==e[3]&&e[3]==d[0]&&d[0]==d[1]&&d[2]==d[3]&&d[3]==f[1]&&f[1]==f[3]&&f[0]==f[2]&&f[2]==b[2]&&b[2]==b[3]&&a[0]==a[1]&&a[1]==a[2]&&a[2]==a[3]&&c[0]==c[1]&&c[1]==c[2]&&c[2]==c[3]){
key=1;
}
if(key==1)cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
}