torch.nn.init

函数描述
torch.nn.init.calculate_gain(nonlinearity,param=None)对于给定的非线性函数,返回推荐的增益值
torch.nn.init.normal(tensor, mean=0, std=1)

从给定均值和标准差的正态分布N(mean, std)中生成值,填充输入的张量或变量

torch.nn.init.constant(tensor, val)

val的值填充输入的张量或变量
torch.nn.init.eye(tensor)用单位矩阵来填充2维输入张量或变量
torch.nn.init.dirac(tensor)用Dirac $\delta$ 函数来填充{3, 4, 5}维输入张量或变量
torch.nn.init.xavier_normal(tensor, gain=1)用一个正态分布生成值,填充输入的张量或变量
torch.nn.init.xavier_uniform(tensor, gain=1)用一个均匀分布生成值,填充输入的张量或变量
torch.nn.init.kaiming_uniform(tensor, a=0, mode='fan_in')用一个均匀分布生成值,填充输入的张量或变量
torch.nn.init.kaiming_normal(tensor, a=0, mode='fan_in')用一个正态分布生成值,填充输入的张量或变量
torch.nn.init.orthogonal(tensor, gain=1)用(半)正交矩阵填充输入的张量或变量
torch.nn.init.sparse(tensor, sparsity, std=0.01)将2维的输入张量或变量当做稀疏矩阵填充,其中非零元素根据一个均值为0,标准差为std的正态分布生成。

原始文档:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn/#torchnn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值