Focal Loss for Dense Object Detection整体介绍及部分细节讲解

本文主要介绍了Focal Loss,一种用于处理类别不平衡问题的损失函数,特别是在密集物体检测任务中。Focal Loss通过调整权重,降低了容易分类样本的影响,重点关注难以分类的样本。文章详细阐述了Focal Loss的原理、推导,以及在RetinaNet检测器中的应用,讨论了模型初始化和类别不平衡问题。此外,还探讨了γ和α参数的作用,以及在训练过程中的优化策略。
摘要由CSDN通过智能技术生成


一、整体总结

主要是针对类别不平衡设计了初始化和loss函数。
初始时将rare类的prior设置的比较低。
引入了alpha和gamma参数,分别用于平衡正负例和难易例。
设计了RetinaNet检测器来考察以上设置效果。

二、Focal loss原理及推导

1. 多类别交叉熵

给定两个概率分布:p(理想结果即正确标签向量)和q(神经网络输出结果即经过softmax转换后的结果向量),则通过q来表示p的交叉熵为:
H ( p , q ) = − ∑ x p ( x ) l o g q ( x ) H(p,q)=−∑_xp(x)logq(x) H(p,q)=xp(x)logq(x)

注意:既然p和q都是一种概率分布,那么对于任意的x,应该属于[0,1]并且所有概率和为1

∀ x , p ( X = x ) ∈ [ 0 , 1 ] 且 ∑ x p ( X = x ) = 1 ∀x,p(X=x)\in[0,1]且∑_xp(X=x)=1 x,p(X=x)[0,1]xp(X=x)=1

交叉熵刻画的是通过概率分布q来表达概率分布p的困难程度,其中p是正确答案,q是预测值,也就是交叉熵值越小,两个概率分布越接近。

2. focal loss推导

在本篇论文中,所用的交叉熵公式是二分类的交叉熵,可以类比着上一节的多类别交叉熵进行查看。
C E ( p , y ) = { − l o g ( p ) y = 1 − l o g ( 1 − p ) o t h e r w i s e . CE(p, y)= \begin{cases} −log(p) & y =1\\ −log(1 − p) & otherwise. \end{cases} CE(p,y)={ log(p)log(1p)y=1otherwise.
其中 y ∈ { ± 1 } y \in\{±1\} y{ ±1}代表正确类别, p ∈ [ 0 , 1 ] p \in [0, 1] p[0,1]代表着模型预测出的y=1的概率。
为了公式的简洁,做如下定义。
p t = { p y = 1 1 − p o t h e r w i s e . p_t =\begin{cases} p& y =1\\ 1-p & otherwise. \end{cases} pt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值