[学习笔记] 初次见面,请多关照 (公式推导+题集)——杜教筛

常见积性函数

  1. μ \mu μ
  2. φ φ φ
  3. d ( n ) d(n) d(n) n n n的约数个数
  4. σ ( n ) σ(n) σ(n) n n n的约数和
  5. ϵ ( n ) ϵ(n) ϵ(n):单位元函数, e ( n ) = [ n = 1 ] e(n)=[n=1] e(n)=[n=1]完全积性
  6. I ( n ) I(n) I(n) I ( n ) = 1 I(n)=1 I(n)=1完全积性
  7. i d ( n ) id(n) id(n) i d ( n ) = n id(n)=n id(n)=n完全积性

∑ d ∣ n φ ( d ) = n \sum_{d|n}φ(d)=n dnφ(d)=n ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1] ∑ d ∣ n φ ( d ) × d = n × φ ( n ) + [ n = 1 ] 2 \sum_{d|n}φ(d)\times d=\frac{n\times φ(n)+[n=1]}{2} dnφ(d)×d=2n×φ(n)+[n=1]


公式推导

∑ i = 1 n f ( i ) \sum_{i=1}^nf(i) i=1nf(i)


狄利克雷卷积

定义两个数论函数 f , g f,g f,g狄利克雷卷积 h h h
( f ∗ g ) ( n ) = h ( n ) ⇔   h ( n ) = ∑ d ∣ n f ( d ) × g ( n d ) = ∑ d ∣ n g ( d ) × f ( n d ) (f*g)(n)=h(n) \Leftrightarrow\ h(n)=\sum_{d|n}f(d)\times g(\frac{n}{d})=\sum_{d|n}g(d)\times f(\frac{n}{d}) (fg)(n)=h(n) h(n)=dnf(d)×g(dn)=dng(d)×f(dn)

如果 f , g f,g f,g 是积性函数则 h h h 函数也是一个积性函数。

证明:令 n = x ∗ y ∧ ( x , y ) = 1 n=x*y\wedge(x,y)=1 n=xy(x,y)=1
h ( n ) = ∑ d ∣ n f ( d ) g ( n d ) ⇔ h ( x y ) = ∑ d 1 ∣ x , d 2 ∣ y f ( d 1 d 2 ) g ( x d 1 y d 2 ) = ∑ d 1 ∣ x , d 2 ∣ y f ( d 1 ) f ( d 2 ) g ( x d 1 ) g ( y d 2 ) h(n)=\sum_{d|n}f(d)g(\frac n d)\Leftrightarrow h(xy)=\sum_{d_1|x,d_2|y}f(d_1d_2)g(\frac x {d_1}\frac y {d_2})=\sum_{d_1|x,d_2|y}f(d_1)f(d_2)g(\frac x{d_1})g(\frac y{d_2}) h(n)=dnf(d)g(dn)h(xy)=d1x,d2yf(d1d2)g(d1xd2y)=d1x,d2yf(d1)f(d2)g(d1x)g(d2y) = ∑ d 1 ∣ x f ( d 1 ) g ( x d 1 ) ∑ d 2 ∣ y f ( d 2 ) g ( y d 2 ) = h ( x ) h ( y ) =\sum_{d_1|x}f(d_1)g(\frac x{d_1})\sum_{d_2|y}f(d_2)g(\frac{y}{d_2})=h(x)h(y) =d1xf(d1)g(d1x)d2yf(d2)g(d2y)=h(x)h(y)

在这里插入图片描述

卷积满足乘法交换/结合律/分配律 (这不是重点😓)

f ∗ g = g ∗ f f*g=g*f fg=gf
( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f*g)*h=f*(g*h) (fg)h=f(gh)
( f + g ) ∗ h = f ∗ h + g ∗ h (f+g)*h=f*h+g*h (f+g)h=fh+gh


杜教筛

杜教筛是一种以低于线性筛时间复杂度积性函数前缀和的筛法。

将所求问题定义成函数,令 S ( n ) = ∑ i = 1 n f ( i ) S(n)=\sum_{i=1}^nf(i) S(n)=i=1nf(i)
先推 ∑ i = 1 n h ( i ) \sum_{i=1}^nh(i) i=1nh(i)
∑ i = 1 n h ( i ) \sum_{i=1}^nh(i) i=1nh(i) = ∑ i = 1 n ∑ d ∣ i g ( d ) × f ( i d ) =\sum_{i=1}^n\sum_{d|i}g(d)\times f(\frac{i}{d}) =i=1ndig(d)×f(di) = ∑ d = 1 n g ( d ) ∑ i = 1 ⌊ n d ⌋ f ( i ) =\sum_{d=1}^ng(d) \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f(i) =d=1ng(d)i=1dnf(i) = ∑ d = 1 n g ( d ) S ( ⌊ n d ⌋ ) =\sum_{d=1}^ng(d)S(\lfloor\frac{n}{d}\rfloor) =d=1ng(d)S(dn)
d = 1 d=1 d=1的一项单独提出来 ⇓ \Downarrow
= g ( 1 ) × S ( n ) + ∑ d = 2 n g ( d ) S ( ⌊ n d ⌋ ) =g(1)\times S(n)+\sum_{d=2}^ng(d)S(\lfloor\frac{n}{d}\rfloor) =g(1)×S(n)+d=2ng(d)S(dn) g ( 1 ) × S ( n ) = ∑ i = 1 n h ( i ) − ∑ d = 2 n g ( d ) S ( ⌊ n d ⌋ ) g(1)\times S(n)=\sum_{i=1}^nh(i)-\sum_{d=2}^ng(d)S(\lfloor\frac{n}{d}\rfloor) g(1)×S(n)=i=1nh(i)d=2ng(d)S(dn)
一般套路情况下 g ( 1 ) = 1 g(1)=1 g(1)=1

时间复杂度是 O ( n 2 3 ) O(n^\frac{2}{3}) O(n32),大概就是 S S S 函数可以记忆化递归,另外设定一个阀值 M M M 预处理 S ( 1 ∼ M ) S(1\sim M) S(1M) 内的信息。

M M M 大约取 n 2 3 n^\frac{2}{3} n32 最优,让预处理和后面记忆化的时间复杂度差不多。

实现

因为 g , h g,h g,h都是我们自己选择构造出来的,通过上面化出的最后式子来看
我们希望 h ( i ) h(i) h(i)的前缀和是好求的,换言之就是很快就能求出来的
然后按 S ( ⌊ n d ⌋ ) S(\lfloor\frac{n}{d}\rfloor) S(dn)可以对后面式子进行分块处理

至于怎么选择 g g g h h h,说实话只能观察式子,或者结合以前的做题经验套路
在这里插入图片描述

常见卷积

S ( n ) = ∑ i = 1 n μ ( i ) S(n)=\sum_{i=1}^n\mu(i) S(n)=i=1nμ(i)
因为知道在莫比乌斯反演有个关于莫比乌斯函数的公式
∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1]
很容易想到 ϵ = μ ∗ I ϵ=\mu*I ϵ=μI
ϵ ( n ) = ∑ d ∣ n μ ( d ) × I ( n d ) = ∑ d ∣ n μ ( d ) = [ n = 1 ] ϵ(n)=\sum_{d|n}\mu(d)\times I(\frac{n}{d})=\sum_{d|n}\mu(d)=[n=1] ϵ(n)=dnμ(d)×I(dn)=dnμ(d)=[n=1]
s ( n ) = ∑ i = 1 n φ ( i ) s(n)=\sum_{i=1}^nφ(i) s(n)=i=1nφ(i)
上述提到过一个公式
n = ∑ d ∣ n φ ( d ) n=\sum_{d|n}φ(d) n=dnφ(d)
所以我们想到 i d = φ ∗ I id=φ*I id=φI
i d ( n ) = ∑ d ∣ n φ ( d ) × I ( n d ) = ∑ d ∣ n φ ( d ) = n id(n)=\sum_{d|n}φ(d)\times I(\frac{n}{d})=\sum_{d|n}φ(d)=n id(n)=dnφ(d)×I(dn)=dnφ(d)=n
S ( n ) = ∑ i = 1 n φ ( i ) × i S(n)=\sum_{i=1}^nφ(i)\times i S(n)=i=1nφ(i)×i
乍一看似乎配不出什么鸟玩意儿
尝试从狄利克雷卷积入手
h = f ∗ g = ∑ d ∣ n f ( d ) × g ( n d ) = ∑ d ∣ n φ ( d ) × d × g ( n d ) h=f*g=\sum_{d|n}f(d)\times g(\frac{n}{d})=\sum_{d|n}φ(d)\times d\times g(\frac{n}{d}) h=fg=dnf(d)×g(dn)=dnφ(d)×d×g(dn)
我们想着如果能把 f f f顺带的多余的 d d d除掉,尝试给 g g g配成 i d id id
h = ∑ d ∣ n φ ( d ) × d × n d = ∑ d ∣ n { φ ( d ) × n } = n ∑ d ∣ n φ ( d ) = n 2 h=\sum_{d|n}φ(d)\times d\times \frac{n}{d}=\sum_{d|n}\{φ(d)\times n\}=n\sum_{d|n}φ(d)=n^2 h=dnφ(d)×d×dn=dn{φ(d)×n}=ndnφ(d)=n2
i 2 i^2 i2的前缀和,欸好巧哦,由公式可以快速算出,所以成功配出来了 g , h g,h g,h
在这里插入图片描述

∑ i = 1 n i 2 = n × ( n + 1 ) × ( 2 n + 1 ) 6 \sum_{i=1}^ni^2=\frac{n\times (n+1)\times (2n+1)}{6} i=1ni2=6n×(n+1)×(2n+1)
∑ i = 1 n i 3 = ( ∑ i = 1 n i ) 2 = [ n × ( n + 1 ) 2 ] 2 = n 2 ( n + 1 ) 2 4 \sum_{i=1}^ni^3=(\sum_{i=1}^ni)^2=[\frac{n\times (n+1)}{2}]^2=\frac{n^2(n+1)^2}{4} i=1ni3=(i=1ni)2=[2n×(n+1)]2=4n2(n+1)2


习题集

Sum

  • solution
    前面提过了 i d = φ ∗ I , ϵ = μ ∗ I id=φ*I,ϵ=\mu*I id=φI,ϵ=μI,直接带公式即可 i d , ϵ id,ϵ id,ϵ就是 h h h φ , μ φ,\mu φ,μ就是 f f f I I I g g g
    g ( 1 ) × S ( n ) = ∑ i = 1 n h ( i ) − ∑ d = 2 n g ( d ) S ( ⌊ n d ⌋ ) g(1)\times S(n)=\sum_{i=1}^nh(i)-\sum_{d=2}^ng(d)S(\lfloor\frac{n}{d}\rfloor) g(1)×S(n)=i=1nh(i)d=2ng(d)S(dn)
  • code
#include <cstdio>
#include <map>
using namespace std;
#define maxn 2000000
#define int long long
map < int, int > mp1, mp2;
int cnt;
bool vis[maxn + 5];
int phi[maxn + 5], mu[maxn + 5], prime[maxn];
int sum1[maxn + 5], sum2[maxn + 5];

void init() {
	mu[1] = phi[1] = 1;
	for( int i = 2;i <= maxn;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, mu[i] = -1, phi[i] = i - 1;
		for( int j = 1;j <= cnt && 1ll * i * prime[j] <= maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				mu[i * prime[j]] = 0;
				phi[i * prime[j]] = phi[i] * prime[j];
				break;
			}
			mu[i * prime[j]] = -mu[i];
			phi[i * prime[j]] = phi[i] * ( prime[j] - 1 );
		}
	}
	for( int i = 1;i <= maxn;i ++ ) 
		sum1[i] = sum1[i - 1] + phi[i], sum2[i] = sum2[i - 1] + mu[i];
}

int find_phi( int n ) {
	if( n <= maxn ) return sum1[n];
	if( mp1[n] ) return mp1[n];
	int ans = n * ( n + 1 ) / 2;
	int r;
	for( int i = 2;i <= n;i = r + 1 ) {
		r = n / ( n / i );
		ans -= ( r - i + 1 ) * find_phi( n / i );
	}
	return mp1[n] = ans;
}

int find_mu( int n ) {
	if( n <= maxn ) return sum2[n];
	if( mp2[n] ) return mp2[n];
	int ans = 1;
	int r;
	for( int i = 2;i <= n;i = r + 1 ) {
		r = n / ( n / i );
		ans -= ( r - i + 1 ) * find_mu( n / i );
	}
	return mp2[n] = ans;
}

signed main() {
	init();
	int T, n;
	scanf( "%lld", &T );
	while( T -- ) {
		scanf( "%lld", &n );
		printf( "%lld %lld\n", find_phi( n ), find_mu( n ) );
	}
	return 0;
}

神犇和蒟蒻

  • solution
    A A A很简单, i 2 i^2 i2 μ \mu μ一定是 0 0 0,所以 A A A一定是 1 1 1
    考虑 B B B,这里要用到欧拉函数的一个性质
    如果 i % j = 0 i\% j=0 i%j=0,则 φ ( i × j ) = φ ( i ) × j φ(i\times j)=φ(i)\times j φ(i×j)=φ(i)×j
    所以 φ ( i 2 ) = φ ( i ) × i φ(i^2)=φ(i)\times i φ(i2)=φ(i)×i,就神奇的转化为了上面的应用公式三
  • code
#include <cstdio>
#include <map>
using namespace std;
#define int long long
#define mod 1000000007
#define maxn 1000000
map < int, int > mp;
int inv6, inv2, cnt;
bool vis[maxn + 5];
int prime[maxn], sum[maxn + 5], phi[maxn + 5];

void init() {
	phi[1] = 1;
	for( int i = 2;i <= maxn;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, phi[i] = i - 1;
		for( int j = 1;j <= cnt && i * prime[j] <= maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				phi[i * prime[j]] = phi[i] * prime[j];
				break;
			}
			phi[i * prime[j]] = phi[i] * ( prime[j] - 1 );
		}
	}
	for( int i = 1;i <= maxn;i ++ )
		sum[i] = ( sum[i - 1] + i * phi[i] ) % mod;
}

int find_phi( int n ) {
	if( n <= maxn ) return sum[n];
	if( mp[n] ) return mp[n];
	int ans = n * ( n + 1 ) % mod * ( 2 * n + 1 ) % mod * inv6 % mod;
	for( int l = 2, r;l <= n;l = r + 1 ) {
		r = n / ( n / l );
		ans -= ( l + r ) * ( r - l + 1 ) % mod * find_phi( n / l ) % mod * inv2 % mod;
		if( ans < 0 ) ans += mod; 
	}
	return mp[n] = ans;
}

int qkpow( int x, int y ) {
	int ans = 1;
	while( y ) {
		if( y & 1 ) ans = ans * x % mod;
		x = x * x % mod;
		y >>= 1;
	}
	return ans;
}

signed main() {
	init();
	int n;
	inv2 = qkpow( 2, mod - 2 );
	inv6 = qkpow( 6, mod - 2 );
	scanf( "%lld", &n );
	printf( "1\n%lld\n", find_phi( n ) );
	return 0;
}

简单的数学题

  • solution
    取模的操作代码里加入就可以了,下面式子中就省略不写了
    ∑ i = 1 n ∑ j = 1 n i × j × g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 n i × j ∑ d ∣ i , d ∣ j φ ( d ) = ∑ d = 1 n φ ( d ) ∑ d ∣ i ∑ d ∣ j i j \sum_{i=1}^n\sum_{j=1}^ni\times j\times gcd(i,j)=\sum_{i=1}^n\sum_{j=1}^ni\times j\sum_{d|i,d|j}φ(d)=\sum_{d=1}^nφ(d)\sum_{d|i}\sum_{d|j}ij i=1nj=1ni×j×gcd(i,j)=i=1nj=1ni×jdi,djφ(d)=d=1nφ(d)didjij
    = ∑ d = 1 n φ ( d ) × d 2 ∑ i = 1 ⌊ n d ⌋ i ∑ j = 1 ⌊ n d ⌋ j = ∑ d = 1 n φ ( d ) × d 2 ( ∑ i = 1 ⌊ n d ⌋ i ) 2 =\sum_{d=1}^nφ(d)\times d^2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}j=\sum_{d=1}^nφ(d)\times d^2(\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i)^2 =d=1nφ(d)×d2i=1dnij=1dnj=d=1nφ(d)×d2(i=1dni)2
    前面杜教筛,后面数论分块
    在这里插入图片描述

  • code

#include <cstdio>
#include <map>
using namespace std;
#define int long long
#define maxn 5000000
map < int, int > mp;
int mod, cnt, inv;
bool vis[maxn + 5];
int prime[maxn], sum[maxn + 5], phi[maxn + 5];

void init() {
	phi[1] = 1;
	for( int i = 2;i <= maxn;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, phi[i] = i - 1;
		for( int j = 1;j <= cnt && i * prime[j] <= maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				phi[i * prime[j]] = phi[i] * prime[j] % mod;
				break;
			}
			else
				phi[i * prime[j]] = phi[i] * ( prime[j] - 1 ) % mod;
		}
	}
	for( int i = 1;i <= maxn;i ++ )
		sum[i] = ( sum[i - 1] + phi[i] * i % mod * i % mod ) % mod;
}

int calc( int n ) {
	n %= mod;
	return n * ( n + 1 ) / 2 % mod;
}

int js( int n ) {
	n %= mod;
	return n * ( n + 1 ) % mod * ( 2 * n + 1 ) % mod * inv % mod;
}

int solve( int n ) {
	if( n <= maxn ) return sum[n];
	if( mp[n] ) return mp[n];
	int ans = calc( n ) * calc( n ) % mod, r;
	for( int i = 2;i <= n;i = r + 1 ) {
		r = n / ( n / i );
		ans = ( ans - ( js( r ) - js( i - 1 ) ) * solve( n / i ) ) % mod;
	}
	return mp[n] = ans;
}

int qkpow( int x, int y ) {
	int ans = 1;
	while( y ) {
		if( y & 1 ) ans = ans * x % mod;
		x = x * x % mod;
		y >>= 1;
	}
	return ans;
}

signed main() {
	int n;
	scanf( "%lld %lld", &mod, &n );
	init();
	inv = qkpow( 6, mod - 2 );
	int r, ans = 0;
	for( int l = 1;l <= n;l = r + 1 ) {
		r = n / ( n / l );
		ans = ( ans + calc( n / l ) * calc( n / l ) % mod * ( solve( r ) - solve( l - 1 ) ) + mod ) % mod;
	}
	printf( "%lld", ( ans + mod ) % mod );
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值