OpenCV学习:图像模糊化处理示例

92 篇文章 20 订阅 ¥59.90 ¥99.00
本文介绍了在计算机视觉中使用OpenCV进行图像模糊化的技术,包括均值模糊和高斯模糊。通过示例代码展示了如何加载图像,应用模糊处理,并调整参数以达到预期效果。
摘要由CSDN通过智能技术生成

在计算机视觉和图像处理领域中,图像模糊化是一种常见的技术,用于降低图像中的噪声或隐藏敏感信息。在本篇文章中,我们将探讨如何使用OpenCV库实现图像模糊化处理。我们将介绍两种常用的模糊化方法:均值模糊和高斯模糊。

首先,我们需要安装OpenCV库。你可以使用pip命令进行安装:

pip install opencv-python

安装完成后,我们可以开始编写代码。

  1. 导入库和加载图像

首先,我们需要导入所需的库,并加载一张待处理的图像。这里我们使用一张名为"input_image.jpg"的图像作为输入。

import cv2

# 加载图像
image = cv2.imread("input_image.jpg")
    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值