在AI时代,一些专业术语悄然重塑世界,"Prompt"就是其中备受关注的科技名词。你或许在技术论坛见过它却不知其意,也可能听朋友聊起它的神奇而满心疑惑。
"Prompt"看似普通,实则蕴含深厚科技内涵,不仅是技术术语,更是影响未来的重要力量。它究竟是什么,又如何改变我们的生活与工作?让我们一同揭开它的神秘面纱。
一、什么是提示工程?
在英语中,Prompt可作动词、形容词、名词和副词,意为“促使、鼓励、迅速的、准时地”等。在人工智能领域,Prompt指触发和引导语言模型生成特定输出的文本片段。使用生成式模型(如GPT)时,用户输入简短提示,模型据此生成文本。
Prompt内容涵盖问题、描述、关键词等,引导模型产出特定主题文本,如“讲个笑话”等,本质是发给大模型的指令。因此,提示工程即“指令工程”(Prompt Engineering),是设计有效提示以指导大语言模型生成文本的过程。个人认为,Prompt是用自然语言清晰描述问题的能力。
二、Prompt有什么用?
使用生成式模型(如GPT)时,优质Prompt能帮助用户精准把控模型输出内容,使其更贴合预期,有效提升文本生成质量与可控性,具体作用如下:
- 提升模型表现:巧妙设计Prompt可引导模型输出更符合需求的内容,提高准确性,贴近人类思维表达。
- 增强灵活性:用户能用多样Prompt指导模型,使其灵活适配不同任务场景,提升实际应用价值。
- 促进可控性:特定Prompt可约束模型输出,避免不当或有害内容,保障模型道德与安全性。
- 推动创新:Prompt为AI带来新研究方向与应用场景,助力探索新架构与方法,驱动技术创新。
- 降低门槛:非专业用户通过调整Prompt即可使用AI,无需修改模型,让AI应用更普及。
总之,Prompt显著提升了AI模型性能、灵活性与可控性,推动AI领域创新发展,降低技术使用门槛。
三、Prompt Engineering 包含哪些内容
Prompt Engineering 包括以下方面:
-
Prompt设计:选择合适的提示内容,包括问题、描述、关键词、上下文等,以引导模型生成特定主题或内容的文本。设计良好的提示可以提高模型生成文本的质量和准确性。
-
Prompt调优:通过调整和优化提示内容,使其更具有引导性和表达力。这可能涉及到尝试不同的提示组合、长度、语言风格等方面的调整,以获得最佳的生成效果。
-
Prompt分析:分析不同提示对生成文本的影响,了解模型如何理解和回应不同的提示。这可以帮助用户更好地理解模型的行为和性能,从而优化提示的设计。
-
Prompt交互:与模型交互,根据生成的文本结果不断调整和改进提示。这种交互式的过程可以帮助用户更好地理解模型的特点和局限性,并指导下一步的提示工程工作。
四、Prompt的构造
通常一个Prompt包含但不限于以下几个方面:
- 角色:给 AI 定义一个最匹配任务的角色,比如:「你是一位软件工程师」「你是一位小学老师」
- 指示:对任务进行描述
- 上下文:给出与任务相关的其它背景信息(尤其在多轮交互中)
- 例子:必要时给出举例,学术中称为 one-shot learning, few-shot learning 或 in-context learning;实践证明其对输出正确性有很大帮助
- 输入:任务的输入信息;在提示词中明确的标识出输入
- 输出:输出的格式描述,以便后继模块自动解析模型的输出结果,比如(JSON、XML)
五、Prompt案例
1、运营文案 Prompt
你的角色是互联网资深运营,帮我写一篇快手的文案脚本,要适配快手社区的语言风格,带货文案中要包括商品卖点,我的第一个商品是{商品描述}
2、软件工程师单元测试Prompt
请为以下代码片段创建一组单元测试以进行彻底测试它的功能。首先,概述你计划创建的测试用例。其次,使用{要使用的语言和框架}和下面提供的代码片段{代码段}来实现测试用例。
我们使用下面这段代码进行测试,这段代码是用于创建10个包含数字和字母的用户名。
def generate_username():
"""
生成10位包含数字和字母的用户名
第一位是大写字母
第2、3位是小写字母
后7位是数字
:return:
"""
code_A = chr(random.randint(65, 90)) # 大写字母
code_a = ''
for i in range(2):
code2 = chr(random.randint(97, 122)) # 小写字母
code_a = ''.join([code_a, code2])
code_num = ''
for i in range(7):
code_int = random.randint(0, 9)
code_num = ''.join([code_num, str(code_int)])
res = ''.join([code_A, code_a, code_num])
return res
3、产品经理进行竞品分析的Prompt
帮我分析几个竞争对手,可以列出产品名字。通过研究提供类似产品或功能的公司,分析{产品/功能}的竞争对手。使用以下表格格式组织您的调查结果:公司名称|资金来源|投资者|客户|目标市场
4、HR招聘 Prompt
由于公司正在招聘,请为[职位名称]职位生成职位描述。理想的候选人应在{技能a}、{技能b}和{技能c}方面拥有多年的经验和专业知识。请编制一份令人信服的工作描述,准确反映角色的要求和职责。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。