在人工智能迅猛发展的当下,各种新名词、新概念层出不穷,AI Agent、Function Call 和 MCP等前沿技术相继亮相,引发了广大开发者与科技爱好者的热烈讨论。
这些技术虽看似高深,实则与 AI 应用朝着智能化、高效化发展的走向息息相关。下面,就让我们深入剖析它们的具体内涵、运作原理,以及彼此间的关联。
一、AI Agent:智能执行任务的 “得力数字助手”
AI Agent,通俗来讲,是一种能够感知所处环境、做出决策并采取行动,以达成特定目标的智能体。
它以大语言模型(LLM)作为核心驱动,具备自主理解、感知、规划、记忆以及运用各类工具的能力,堪称一个能够自动化完成复杂任务的智能系统。
打个比方,当你面临一项繁杂的工作任务时,AI Agent 就如同一位贴心的智能助手,它会依据任务需求,仔细分析环境信息,精心制定执行计划,精准调用适配的工具,最终完美完成任务。无论是复杂的数据统计分析、充满创意的文案创作,还是头绪繁多的项目管理,AI Agent 都能轻松应对,游刃有余。
二、Function Call:大语言模型与第三方系统的沟通桥梁
Function Call 即函数调用。
这是由OpenAI等行业领先企业推动的一项前沿技术。它赋予了大语言模型(LLM)通过自然语言解析,与第三方系统进行对接的能力,能够将用户口语化的指令精准地转化为结构化的服务请求。
Function Call 的运作流程如下:
-
用户输入指令(prompt)。
-
LLM 接收用户输入,并结合预先定义好的 Function(函数)。
-
LLM 根据用户输入判断是否需要调用工具。
-
若需调用工具,LLM会返回与之匹配的函数结构,其中包含相应的参数及值。
-
程序接收到返回的“函数” 后,执行具体的函数调用操作。
-
LLM 接收函数调用返回的数据,并结合用户最初输入的指令。
-
LLM 生成最终结果反馈给用户。
例如,当你对支持 Function Call 的 AI 助手说:“帮我查询今天上海的天气”,LLM 会迅速识别出需要调用天气查询函数,然后返回对应的函数结构和参数。程序执行函数调用获取天气数据后,再由 LLM 将数据整理成便于理解的形式反馈给你。
三、MCP:统一大模型通信的开放标准
MCP,全称为 Model Context Protocol,即模型上下文协议。
这是 Anthropic 在 2024 年 11 月底推出的一项开放标准,旨在统一大模型与外部数据源及工具之间的通信协议。
MCP 的工作流程如下:
-
用户输入指令(prompt)。
-
LLM 接收用户输入,并获取由 MCP Client 提供的可用工具集合。
-
LLM 根据用户输入判断是否需要调用 MCP 工具。
-
若需调用 MCP 工具,LLM 会返回与之匹配的 MCP 工具,其中包含相应的参数及值。
-
程序处理返回的“MCP 工具”,先由用户审核其合法性,审核通过后执行具体的 MCP 工具调用(向 MCP Server 发送请求)。
-
LLM 接收 MCP Server 返回的数据,并结合用户最初输入的指令。
-
LLM 生成最终结果反馈给用户。
MCP 的优势在于其通用性与标准化。基于 Client/Server 框架,它实现了功能的模块化,不同的大模型和工具能够借助统一的协议进行通信,极大地提高了系统的兼容性与扩展性。
四、Function Call 与 MCP:协作共进,而非相互取代
不少人误以为MCP是用来取代Function Call的,实际上它们之间是协作或互补的关系。
- 调用主体:两者都并非由LLM直接调用,而是需要程序来调用具体的工具(函数)。
- 技术性质:MCP只是一个协议,着重强调通用(复用)能力;Function Call 则是LLM自身的一种增强能力,并非所有 LLM 都支持。
- 实现方式:MCP 基于 Client/Server 架构,实现功能的模块化和通用化,遵循标准协议,处理和调用的是在Server端;Function Call 的实现功能是本地调用,相对封闭,缺乏通用性。
- 工具发现:若LLM具备Function Call能力,将有助于发现Function或Tool;若不具备,可借助强大的prompt上下文语义,让LLM理解并发现工具。
- 调用优势:使用Function Call能力调用工具,原理上优于通过prompt方式,且token消耗更少,因为Function Call能力需要LLM提前进行训练。
五、未来趋势:AI Agent = LLM + Function Call + MCP
随着人工智能技术的不断发展和应用落地,将LLM、Function Call 和 MCP 相结合,构建更强大的 AI Agent 已成为必然趋势。
AI Agent 凭借LLM的智能决策、Function Call 的精准工具调用,以及MCP的通用通信能力,能够更出色地处理复杂任务,为用户提供更为高效、智能的服务。无论是在企业办公、智能客服,还是智能家居等领域,这种组合都将发挥巨大作用,推动人工智能应用迈向新的高度。
人工智能领域的技术创新可谓日新月异,AI Agent、Function Call 和 MCP 的协同发展仅仅是冰山一角。未来,必然还会有更多创新技术不断涌现,持续改变我们的生活和工作方式。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。