天造地设的主成分与神经网络

本文探讨了主成分分析与聚类分析的区别,指出主成分分析侧重于数据压缩,适合预测,而聚类分析关注列间整合,适合抽象因子提取。主成分与神经网络(尤其是CNN)在预测任务中相互补充。主成分不适用于决策树,因为决策树对变量数量有限制。主成分预测新样本的流程包括确定主成分数量、处理新样本和进行预测。
摘要由CSDN通过智能技术生成

                                                   主成分与聚类能否自由切换?

       分析架构中常常会涉及到主成分分析的环节,我常常会想,这部分主成分分析能不能用聚类分析去替代呢?结论是不能~

       首先,两者强调的重点不同,聚类分析强调的是列与列之间的整合关系,其强项是抽象因子的提取,而主成分分析并不擅长因子的解释,其强项为压缩技术

       其次,如果分析架构中嵌入了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值