机器学习小组知识点3:最小二乘法(LSM)

本文深入探讨了最小二乘法(LSM),从闭形式推导到概率解释。通过极大似然估计,解释了为何使用最小二乘法处理高斯噪声数据。总结中指出,最小二乘法适用于高斯噪声场景,并强调其与极大似然估计的等价性。
摘要由CSDN通过智能技术生成

上篇博客介绍了最小均方算法(LMS),其实里面的东西包含的很多,其中有最小二乘法,梯度下降以及随机梯度下降法。这篇博客着重介绍最小二乘法的推导,来源以及做一点儿推广。下面进入正题:

最小二乘法的闭形式推导

在上篇博客我们引入了 J(θ) 成本函数的具体形式,这里我们要推导出关于 θ 的“闭形式”,数学上也称为解析解的形式。下面我们要重新将 J 写成矩阵乘向量的形式。

给定一个训练集,定义“设计矩阵” X 是一个 mn 的矩阵(实际上就是样本输入变量写成的矩阵,下面就看到了),这里要注意实际上是 m(n+1) 维矩阵,至于为什么 n+1 维矩阵呢?这里要回头看看上篇博客里面的截矩项,他多占了其中的一个维度。不过为了叙述方便,我们还是统一为 n 维。
我们先给出 X 的矩阵形式,

x(1)Tx(2)Tx(m)T

这里我们还是保留了老传统,样本数量是 m 个,特征的维度总数为 n 维。另外,里面的 x 都是列向量。
接下来,相对应的就是数据项,也就是我们样本已经有的观测数据项,再清楚点儿就是我们监督学习里面起到“监督”二字的关键,那么他本身应该是对应 x 的维度的,那么这样的话,我们就能够得到 m 维的向量 y 了,见下面形式 Y 为:
y(1)y(2)y(m)

现在因为 hθ(x(i))=(x(i))Tθ ,那么我们简单的写出数据拟合的形式即
XθY=x(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值