机器学习小组知识点31:重要性采样(Importance Sampling )

重要性采样的历史要追溯到20世纪40年代,感兴趣的同学可以查看相关的文献。

接下来我们要介绍另一个重要的proposal distribution q(x) 使得他的支撑包含 p(x) 的支撑。
问题为求以下问题的积分:

I(f)=Xf(x)p(x)dx

那么,我们可以将其转化为
I(f)=Xf(x)w(x)q(x)dx

其中, w(x)=p(x)q(x) ,我们称 w(x) 为重要性权重。实际上,聪明的同学发现,就是啥都没变,引入了一个
  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习中的特征重要性评估是衡量模型中每个特征对于预测结果贡献程度的过程。这有助于理解哪些特征对模型的性能影响最大,以及在优化模型时如何选择或调整这些特征。常见的特征重要性评估方法有: 1. **方差阈值(Variance Threshold)**:基于特征的方差来判断其对数据变化的敏感度,方差大的特征通常认为更重要。 2. **相关系数(Correlation Coefficient)**:计算特征与目标变量之间的线性相关性,高的正负相关性意味着特征可能有用。 3. **递归特征消除(Recursive Feature Elimination, RFE)**:通过反复训练模型并删除最不重要的特征,直到达到预定的复杂度或性能目标。 4. **随机森林(Random Forest)特征重要性**:随机森林提供了每个特征的重要性得分,基于每个特征被错误分类的次数。 5. **梯度提升树(GBM)特征重要性**:GBM模型的每个决策树都会贡献特征的重要性,这些加权平均就是最终的特征重要性。 6. **Lasso回归和Ridge回归的正则化系数**:正则化项可以提供特征选择的信息,系数接近于0的特征被认为是不重要的。 7. **Permutation Importance**:通过随机打乱特征值,观察模型性能的变化,打乱后的下降越大,特征越重要。 8. **SHAP 值(SHapley Additive exPlanations)**:这是一种基于游戏理论的方法,提供每个特征对预测值的精确贡献。 评估特征重要性的目的是为了提高模型的解释性和泛化能力,以及在特征工程阶段进行有效的资源分配。了解哪些特征最有价值可以帮助我们减少噪声、避免过拟合,并可能引导到更简洁、更高效的模型设计。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值