遇见错误:ValueError: Classification metrics can't handle a mix of binary and continuous targets

在使用TensorFlow进行分类任务并尝试生成分类精度报告时,遇到了无法处理混合目标类型的错误。本文详细介绍了如何通过调整预测结果和标签的数据类型来解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天在使用tensorflow完成一个分类任务的时候,将输出的结果通过sklearn支持的一个classification_report这个函数来生成分类精度报告。然后出现了这样的错误。

ValueError: Classification metrics can't handle a mix of binary and continuous targets

在检查了predict和label的维数等之后,发现并不是维数的问题。

最终解决这个问题是发现predict和label的数据类型不同,predict还是float类型,表示分类类别的概率。label是int类型,代表的是类别标签。

然后把两者都统一为int之后问题解决。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值