图论3 详解Floyd算法

简介

编辑 播报

在计算机科学中,Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法。算法的单个执行将找到所有顶点对之间的最短路径的长度(加权)。 虽然它不返回路径本身的细节,但是可以通过对算法的简单修改来重建路径。 该算法的版本也可用于查找关系R的传递闭包,或(与Schulze投票系统相关)在加权图中所有顶点对之间的最宽路径。

Floyd-Warshall算法是动态规划的一个例子,并在1962年由Robert Floyd以其当前公认的形式出版。然而,它基本上与Bernard Roy在1959年先前发表的算法和1962年的Stephen Warshall中找到图形的传递闭包基本相同,并且与Kleene的算法密切相关 在1956年)用于将确定性有限自动机转换为正则表达式。算法作为三个嵌套for循环的现代公式首先由Peter Ingerman在1962年描述。

该算法也称为Floyd算法,Roy-Warshall算法,Roy-Floyd算法或WFI算法。 [2] 

核心思路

编辑 播报

路径矩阵

通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。 [3] 

从图的带权邻接矩阵A=[a(i,j)] n×n开始,迭代地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。

采用松弛技术(松弛操作),对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);

状态转移方程

状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]};

map[i,j]表示i到j的最短距离,K是穷举i,j的断点,map[n,n]初值应该为0,或者按照题目意思来做。

当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路。

算法过程

编辑 播报

1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。

把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i][j]=d,d表示该路的长度;否则G[i][j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i][j]表示从Vi到Vj需要经过的点,初始化D[i][j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i][j] = min( G[i][j], G[i][k]+G[k][j] ),如果G[i][j]的值变小,则D[i][j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。

<
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值