先通过画图来分析,p人出席,切p刀,q人出席,切q刀,其中有gcd(p,q)刀是重复的,所以
可以得到公式是p+q-gcd(p,q)。
这里求最大公约数用辗转相除法来得到,设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q……r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用b除以r1,得b÷r1=q……r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2,……如此下去,直到能整除为止。其最后一个为被除数的余数的除数即为(a, b)。
例如:a=25,b=15,a/b=1……10,b/10=1……5,10/5=2…….0,最后一个为被除数余数的除数就是5,5就是所求最大公约数。
最终AC代码:
#include<iostream>
using namespace std;
int gcd(int x, int y)
{
if (y==0)
return x;
else return gcd(y, x%y);
}
int main()
{
int p, q,g;
while (cin >> p >> q)
{
if (p > q)
g = gcd(p, q);
else g = gcd(q, p);
cout << p + q - g << endl;
}
return 0;
}