【论文复现】LeNet-5

在这里插入图片描述

📝个人主页🌹:Eternity._
🌹🌹期待您的关注 🌹🌹

在这里插入图片描述
在这里插入图片描述

概述


LeNet是最早的卷积神经网络之一。1998年,Yann LeCun第一次将LeNet卷积神经网络应用到图像分类上,在手写数字识别任务中取得了巨大成功。LeNet通过连续使用卷积和池化层的组合提取图像特征。
出自论文 《Gradient-Based Learning Applied to Document Recognition》

本文所涉及的所有资源的获取方式:这里

LeNet-5网络架构介绍


在这里插入图片描述
在这里插入图片描述
LeNet-5共有7层,输入的原始图像大小是32×32像素,卷积层用Ci表示,子采样层(pooling,池化)用Si表示,全连接层用Fi表示。

  • 输入层

输入32×32通道数为1的图片

  • C1层(卷积层)

使用6个5×5大小的卷积核,padding=0,stride=1,得到6个28×28大小的特征图

激活函数: ReLU

可训练参数:6×(5×5+1)=156

  • S2层(池化层)

最大池化,池化窗大小2×2,stride=2

可训练参数:6×(1+1)=12,其中第一个 1 为池化对应的 2*2 感受野中最大的那个数的权重 w,第二个 1 为偏置 b。

  • C3层(卷积层)

使用16个5×5大小的卷积核,padding=0,stride=1,得到16个10×10大小的特征图

激活函数: ReLu

可训练参数:6×(5×5×3+1)+6×(5×5×4+1)+3×(5×5×4+1)+1×(5×5×6+1)=1516

16 个卷积核并不是都与 S2 的 6 个通道层进行卷积操作,如下图所示,C3 的前六个特征图(0,1,2,3,4,5)由 S2 的相邻三个特征图作为输入,对应的卷积核尺寸为:5x5x3;接下来的 6 个特征图(6,7,8,9,10,11)由 S2 的相邻四个特征图作为输入对应的卷积核尺寸为:5x5x4;接下来的 3 个特征图(12,13,14)号特征图由 S2 间断的四个特征图作为输入对应的卷积核尺寸为:5x5x4;最后的 15 号特征图由 S2 全部(6 个)特征图作为输入,对应的卷积核尺寸为:5x5x6。

  • S4层(池化层)

最大池化,池化窗大小2×2,stride=2

可训练参数:16×(1+1)=32

  • C5层(卷积层/全连接层)

由于该层卷积核的大小与输入图像相同,故也可认为是全连接层。

C5 层是卷积层,使用 120 个 5×5x16 大小的卷积核,padding=0,stride=1进行卷积,得到 120 个 1×1 大小的特征图:5-5+1=1。即相当于 120 个神经元的全连接层。

值得注意的是,与C3层不同,这里120个卷积核都与S4的16个通道层进行卷积操作。

激活函数: ReLU

可训练参数:120×(5×5×16+1)=48120

  • F6层(全连接层)

F6 是全连接层,共有 84 个神经元,与 C5 层进行全连接,即每个神经元都与 C5 层的 120 个特征图相连。计算输入向量和权重向量之间的点积,再加上一个偏置,结果通过 sigmoid 函数输出。

可训练参数:84×(120+1)

  • OUTPUT层(全连接层)

最后的 Output 层也是全连接层,是 Gaussian Connections,采用了 RBF 函数(即径向欧式距离函数),计算输入向量和参数向量之间的欧式距离(目前已经被Softmax 取代)。

可训练参数:84×10

使用 LeNet-5 网络结构创建 MNIST 手写数字识别分类器


MNIST是一个非常有名的手写体数字识别数据集,训练样本:共60000个,其中55000个用于训练,另外5000个用于验证;测试样本:共10000个。MNIST数据集每张图片是单通道的,大小为28x28。
在这里插入图片描述

下载并加载数据,并对数据进行预处理


# 下载MNIST数据集
    train_set = datasets.MNIST(root = "./data", train = True, download = True, transform = pipline_train)
    test_set = datasets.MNIST(root = "./data", train = False, download = True, transform = pipline_test)
    # 加载数据集
    train_data = torch.utils.data.DataLoader(train_set, batch_size = opt.batch_size, shuffle = True)
    test_data = torch.utils.data.DataLoader(test_set, batch_size = opt.batch_size, shuffle = False)

    train_data_size = len(train_data)
    test_data_size = len(test_data)
    print("训练数据集长度:{}\n测试数据集长度:{}".format(train_data_size, test_data_size))

若本地无MNIST数据集,会在当前目录下新建一个data文件夹存放数据。
在这里插入图片描述

MNIST数据集中的图片数据以ubyte格式存储,ubyte是一种无符号字节类型,取值范围在0~255之间。MNIST数据集的图像数据文件为"train-images-idx3-ubyte.gz"和"t10k-images-idx3-ubyte.gz",其中前者存储了训练数据,后者存储了测试数据。

由于 MNIST 数据集图片尺寸是 28x28 单通道的,而 LeNet-5 网络输入 Input 图片尺寸是 32x32,使用 transforms.Resize 将输入图片尺寸调整为 32x32。

pipline_train = transforms.Compose([
    # 随机旋转图片
    transforms.RandomHorizontalFlip(),
    # 将图片尺寸resize到32x32
    transforms.Resize((32, 32)),
    # 将图片转化为Tensor格式
    transforms.ToTensor(),
    # 正则化(当模型出现过拟合的情况时,用来降低模型的复杂度)
    transforms.Normalize((0.1307,), (0.3081,))
])
pipline_test = transforms.Compose([
    # 将图片尺寸resize到32x32
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

搭建 LeNet-5 神经网络结构,并定义前向传播的过程


# 搭建 LeNet-5 神经网络结构,并定义前向传播的过程
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)  # 输入通道的数量;输出通道的数量(也就是卷积核的数量);卷积核的大小
        self.relu = nn.ReLU()
        self.maxpool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.maxpool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.maxpool2(x)
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        output = F.log_softmax(x, dim = 1)
        return output

训练过程


def train_runner(model, device, trainloader, optimizer):
    # 训练模型, 启用 BatchNormalization 和 Dropout, 将BatchNormalization和Dropout置为True
    model.train()
    total = 0
    correct = 0.0

    # enumerate迭代已加载的数据集,同时获取数据和数据下标
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        # 把模型部署到device上
        inputs, labels = inputs.to(device), labels.to(device)
        # 保存训练结果
        outputs = model(inputs)
        # 计算损失和
        # 多分类情况通常使用cross_entropy(交叉熵损失函数), 而对于二分类问题, 通常使用sigmod
        loss = F.cross_entropy(outputs, labels)
        # 初始化梯度
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 更新参数
        optimizer.step()

        # 获取最大概率的预测结果
        # dim=1表示返回每一行的最大值对应的列下标
        predict = outputs.argmax(dim = 1)
        total += labels.size(0)
        correct += (predict == labels).sum().item()

        if i % 1000 == 0:
            # loss.item()表示当前loss的数值
            print("Train Loss: {:.4f}, Accuracy: {:.2f}%".format(loss.item(), 100 * (correct / total)))

    return loss.item(), 100 * (correct / total)

测试过程


def val_runner(model, device, testloader):
    # 模型验证, 必须要写, 否则只要有输入数据, 即使不训练, 它也会改变权值
    # 因为调用eval()将不启用 BatchNormalization 和 Dropout, BatchNormalization和Dropout置为False
    model.eval()
    # 统计模型正确率, 设置初始值
    correct = 0.0
    test_loss = 0.0
    total = 0
    best_acc = 0.0
    # torch.no_grad将不会计算梯度, 也不会进行反向传播
    with torch.no_grad():
        for data, label in testloader:
            data, label = data.to(device), label.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, label).item()
            predict = output.argmax(dim = 1)
            # 计算正确数量
            total += label.size(0)
            correct += (predict == label).sum().item()
        # 计算损失值
        val_acc = correct / total
        print("Test loss: {:.4f}, Accuracy: {:.2f}%".format(test_loss / total, 100 * val_acc))
        # 保存最佳模型
        if val_acc > best_acc:
            best_acc = val_acc
            torch.save(model, './model-mnist_best.pth')  # 保存模型

    return test_loss / total, 100 * val_acc

使用方式


可直接在IDLE中运行代码,其中train.py文件用于训练网络,model.py文件用于定义网络,test.py文件用来对训练完的模型做一个测试推理。
也可直接调用命令行实现,如

python train.py --epochs 100 --lr 0.001 --batch_size 64

若不指定相关参数,train.py默认为训练10轮,学习率0.001,batch_size为64。

说明


本项目的文件夹架构如下:
在这里插入图片描述
运行训练代码后首先会输出模型结构
在这里插入图片描述
每轮训练输出
在这里插入图片描述
经历100次epoch,训练集损失值和准确率曲线如下
在这里插入图片描述
经历100次epoch,测试集损失值和准确率曲线如下
在这里插入图片描述
可以看到,模型在第20轮左右收敛

代码中还使用了tensorboard可视化工具,以下是tensorboard可视化结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最终在测试样本上,average_loss降到了 0.00129,accuracy 达到了 97.28%。可以说 LeNet-5 的效果非常好!

使用test.py进行测试推理时,由于MNIST数据集中的图片数据以ubyte格式存储,需要转成图片的格式,具体转换脚本参照mnist2jpg.py

# 获取图像数据和标签
    img, label = mnist_train[i]

    # 转换图像数据为numpy数组
    img_np = np.squeeze(img.numpy())

    # 展示图像
    plt.imshow(img_np, cmap = 'gray')
    plt.axis('off')  # 关闭坐标轴显示
    plt.savefig('{}/mnist_image_{}.jpg'.format(save_dir, label), bbox_inches = 'tight', pad_inches = 0)
    plt.close()

测试图片:
在这里插入图片描述
输出:
在这里插入图片描述
能够成功识别出来。

部署方式


python,pytorch


编程未来,从这里启航!解锁无限创意,让每一行代码都成为你通往成功的阶梯,帮助更多人欣赏与学习!

更多内容详见:这里

### LeNet-5 原始模型在数字识别任务上的准确率 LeNet-5 是一种经典的卷积神经网络架构,在手写数字识别任务上表现优异。根据已有的研究成果,该模型能够达到 **98%以上** 的准确率[^1]。这一性能在当时的背景下属于顶尖水平,并推动了深度学习领域的发展。 进一步来看,实际实验表明,当使用 LeNet-5 对 MNIST 数据集进行训练并测试时,经过 10 轮迭代后,其在包含 60,000 张图像的数据集中实现了约 **99%** 的识别正确率[^2]。此结果验证了 LeNet-5 在处理此类任务中的高效性和稳定性。 值得注意的是,尽管现代更深层次的网络可能超越了 LeNet-5 的精度指标,但它作为早期成功的 CNN 架构之一,依然具有重要的理论价值和技术意义。 #### TensorFlow 实现细节补充 在基于 TensorFlow 复现 LeNet-5 模型的过程中发现,某些特定层的设计(如尺寸为 \(5 \times 5\) 过滤器的最后一层卷积操作),实际上可视为全连接层的一部分。这种设计最终输出节点数目设定为 120 个[^3],这也反映了原始论文设计理念与后续优化之间的联系。 ```python import tensorflow as tf model = tf.keras.models.Sequential([ # 卷积层1 tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), strides=(1, 1), activation='tanh', input_shape=(32, 32, 1)), tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2)), # 卷积层2 tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), strides=(1, 1), activation='tanh'), tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2)), # 展平层 tf.keras.layers.Flatten(), # 全连接层1 (对应原结构中C5层) tf.keras.layers.Dense(units=120, activation='tanh'), # 全连接层2 tf.keras.layers.Dense(units=84, activation='tanh'), # 输出层 tf.keras.layers.Dense(units=10, activation='softmax') ]) ``` 上述代码展示了如何利用 TensorFlow 来构建一个类似于 LeNet-5 结构的模型,其中最后一层卷积被替换成了全连接形式以适应当前框架特性。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值