论文精读 - LeNet-5 -《Gradient-Based Learning Applied to Document Recognition》
全连接网络存在的一些问题:
1.
典型图像很大,通常有几百个像素。
全连接网络的第一个隐藏层中有一百个神经元。
全连接网络将已经包含数万个权重(几百x一百)。
增加了系统的容量,需要更大的训练集。
存储如此多的权重的内存需求会排除某些硬件实现。
用于图像应用的非结构化网络的主要缺陷是对输入的平移或局部失真没有内置的不变性。
学习这些权重配置需要大量的训练实例来覆盖可能的变化空间。
卷积网络中 平移不变性
是通过 权重共享
而自动获得的。
2.
全连接网络完全忽略了输入的拓扑信息
。
图像具有很强的二维局部结构,空间上邻近的像素高度相关。
卷积网络通过隐藏单元的 局部感受野
来提取局部特征。
卷积网络结合了三种架构思想,以确保一定程度的平移、缩放和失真不变性。
1.局部感受野
通过局部感受野,神经元可以提取出基本的视觉特征,例如定向边缘、端点、角。
这些基本的视觉特征被随