机器学习笔记

机器学习笔记

分类

  1. 按学习方式分类:
  • 监督学习
  • 无监督学习
  • 半监督学习
  • 强化学习
  1. 按是否能够动态学习分类:
  • 批量学习
  • 在线学习
  1. 按泛化类型分类:
  • 基于实例学习
  • 基于模型学习

术语

预处理 Preprocessing

特征缩放 Feature Scaling

标准化 Standardization

x ′ = x − X ‾ S x'=\frac{x-\overline{X}}{S} x=SxX

Sklearn中的用法:

from sklearn.preprocessing import StandardScaler
StandardScaler().fit_transform()
最大-最小缩放 min-max Scaling

x ′ = x − m i n m a x − m i n x'=\frac{x-min}{max-min} x=maxminxmin

Sklearn中的用法:

from sklearn.preprocessing import MinMaxScaler
MinMaxScaler().fit_transform()
归一化 Normalization

x ′ = x ∣ ∣ x ∣ ∣ x'=\frac{x}{||x||} x=∣∣x∣∣x

from sklearn.preprocessing import Normalizer
Normalizer().fit_transform()

二值化

 from sklearn.preprocessing import Binarizer
 Binarizer(threshold=3).fit_transform()

处理文本数据

独热编码 OneHot Encode

Sklearn中的用法:

from sklearn.preprocessing import OneHotEncoder
OneHotEncoder().fit_transform()
文本标签转换数字

Sklearn中的用法:

from sklearn.preprocessing import LabelEncoder
LabelEncoder().fit_transform()
文本标签二值化

Sklearn中的用法:

from sklearn.preprocessing import LabelBinarizer
LabelBinarizer.fit_transform()

缺失值填充

Sklearn中的用法:

from sklearn.preprocessing import Imputer
Imputer().fit_transform()

自定义转换器

Sklearn中的用法:

from sklearn.base import BaseEstimator, TransformerMixin

常见算法

  • 回归算法 Regression
    • 线性回归 Linear Regression
    • 逻辑回归 Logistic Regression(*常用于分类)
    • Softmax 回归(*常用于分类)
  • 决策树算法 Decision Tree
    • 分类和回归树 CART
    • ID3
    • C4.5 & C5.0
  • 贝叶斯算法 Bayesian
    • 朴素贝叶斯
  • 基于核的算法 Kernel-Based
    • 支持向量机 Support Vector Machine,SVM
    • 径向基函数 Radial Basis Function ,RBF
  • 基于实例的学习算法 Instance-Based
    • k-邻近 k-NN
  • 集成学习算法 Ensemble
    • Boosting
    • Bagging
    • AdaBoost
    • 随机森林 Random Forest
  • 聚类算法 Clustering
    • K-均值 k-means
    • 期望最大算法 Expectation Maximisation,EM
  • 人工神经网络 Artificial Neural Network
    • 感知机 Perceptron
    • 反向传播算法 Back-Propagation
    • 深度神经网络 DNN
    • 卷积神经网络 CNN
    • 循环神经网络 RNN
  • 关联规则学习算法 Association Rule Learning
    • Apriori
    • FP-growth
  • 降维算法
    • 主成分分析 PCA
    • 奇异值分解 SVD
    • 线性判别分析 LDA
  • 正则算法 Regularization
    • 岭回归 Ridge Regression
    • Lasso 回归
    • 弹性网络 Elastic Net
  • 优化算法 Optimization
    • 梯度下降 Gradient Decent
    • 随机梯度下降 Stochastic Gradient Decent
    • 批量梯度下降 Batch Gradient Decent
    • 小批量梯度下降 Mini-batch Gradient Decent
    • 正规方程 Normal Equation

评估指标 Metrics

均方误差

Sklearn中的用法:

from sklearn.metrics import mean_squared_error
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值