小目标检测、图像分类、图像识别等开源数据集汇总

街景门牌号 (SVHN) 数据集

数据集下载地址:http://m6z.cn/5ExMWb

SVHN 是一个真实世界的图像数据集,用于开发机器学习和对象识别算法,对数据预处理和格式化的要求最低。它可以被视为与MNIST风格相似(例如,图像是经过裁剪的小数字),但包含一个数量级的更多标记数据(超过 600,000 个数字图像),并且来自一个更难、未解决的现实世界问题(识别自然场景图像中的数字和数字)。SVHN 是从谷歌街景图像中的门牌号获得的。

3D MNIST 数字识别图像数据

数据集下载地址:http://m6z.cn/5SUfEd

该数据集的目的是提供一种简单的方法来开始处理 3D 计算机视觉问题,例如 3D 形状识别。

文档影印和内容数据

数据集下载地址:http://m6z.cn/6nF67S

MediaTeam Oulu Document 数据集是一个文档扫描图像和文档内容数据集,包含 500篇 1975年之前的文档信息。

### 数据集资源 对于目标检测任务,存在多种公开可用的数据集。这些数据集涵盖了不同的应用场景和技术需求。例如,有专注于工业缺陷检测数据集[^1],这类数据集特别适用于发现生产过程中的瑕疵或异常情况。此外,还有专门针对小目标识别的小目标数据集以及应用于遥感图像分析的遥感数据集。 如果需要直接使用的数据集,某些平台已经提供了经过预处理并适配特定框架(如YOLO)的目标检测数据集。这意味着它们已经被转换为适合模型训练的标准格式,从而减少了前期准备的工作量。 另外值得注意的是,部分高质量数据集不仅限于上述提到的应用领域,还可能涉及行人检测、交通标志识别等多个方面。下面是一些获取目标检测数据集的具体途径: #### 常见开源数据集网站链接 - **Open Images Dataset**: 提供大量标注好的图片用于视觉对象检测研究。 - **COCO (Common Objects in Context)**: 包含超过30万张照片,覆盖80种类别的物体实例。 - **Pascal VOC**: 主要面向分类和定位挑战赛而建立的经典数据集合之一。 ```python import torch from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor()]) dataset = datasets.CocoDetection(root='./data', annFile='./annotations.json', transform=transform) print(f"The dataset contains {len(dataset)} images.") ``` 以上代码片段展示了如何利用PyTorch加载来自COCO的数据集作为示例。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值