HDU 4034 Graph(11年成都 Floyd运用)

转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526       by---cxlove

题目:给出一个有向图,任意两点之间的最短路径,问是否 存在这样的图,如果存在最少有几条边

http://acm.hdu.edu.cn/showproblem.PHP?pid=4034 

对于第一问判断是否存在的话,用Floyd判断一下是否还能继续松弛即可。

对于第二问,枚举两个点i,j,然后判断是否存在一个中介点k,能组成两个点之间的最短路,如果能的话,说明i和j之间没有直接相连的边,因为题目要求边数最少

#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#include<algorithm>
#include<set>
#define inf 110000
#define M 10005
#define N 200005
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define pb(a) push_back(a)
#define mem(a,b) memset(a,b,sizeof(a))
#define eps 1e-9
#define zero(a) fabs(a)<eps
#define LL long long
#define lson (step<<1)
#define rson (step<<1|1)
#define MOD 1000000007
using namespace std;
int n,path[105][105];
int main(){
	int t,cas=0;
	scanf("%d",&t);
	while(t--){
		scanf("%d",&n);
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++)
				scanf("%d",&path[i][j]);
		printf("Case %d: ",++cas);
		bool flag=true;
		for(int k=0;k<n&&flag;k++)
			for(int i=0;i<n&&flag;i++)
				for(int j=0;j<n&flag;j++)
					if(i!=j&&i!=k&&j!=k)
						if(path[i][j]>path[i][k]+path[k][j])
							flag=false;
		if(!flag){puts("impossible");continue;}
		int ans=0;
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++){
				if(i==j) continue;
				bool mark=true;
				for(int k=0;k<n;k++)
					if(j!=k&&i!=k&&path[i][j]==path[i][k]+path[k][j]){
						mark=false;
						break;
					}
				if(mark) ans++;
			}
		printf("%d\n",ans);
	}
	return 0;
}


阅读更多
个人分类: 图论—最短路
上一篇CF 274D Lovely Matrix(拓扑排序)
下一篇HDU 4747 Mex (2013杭州网络赛1010题,线段树)★
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭