今天同样是由子豪兄带领我们学习的mmsegmentation的代码教程部分,子豪兄说的“我希望你们都能在大树下乘凉”真的类目,只要修改数据集,config配置文件,就能使用子豪兄写好的代码训练自己的语义分割模型,并用训练好的模型测试语义分割的结果。总体来说分为下面这几个步骤:
1.下载数据集,需要确保格式和子豪兄的一致,文件夹分为ann_dir和img_dir,每个文件夹又分train和val,ann_dir是PNG格式的标注,img_dir是JPG格式的原图。
2.定义数据集类,需要把dataset.py文件中的数据集类别改成你使用的数据集的类别,并且指定图像扩展名。
3.定义训练/测试pipeline。这个文件只需要修改前两行的数据集类名和路径即可。
4.下载模型的config配置文件,这个config集成了算法的模型、训练的超参数、优化策略、刚才的训练/测试pipeline。
5.训练:尽量多留一些显存,如果报错CUDA out of memory,可以调小batchsize。
6.可视化训练日志,根据子豪兄写好的代码,可以看到训练结果的各种指标数据,以及loss和评估指标的变化曲线图。
7.用自己训练的模型预测自己的图片。
8.在测试集上进行性能评估。
总之,子豪兄已经尽可能把学习代码的门槛降到最低,除了安装过程,其实后面只是修改一些小地方,这也是openmmlab的强大之处,希望后续能学会config配置文件的写法,毕竟这是最关键的部分!