原型聚类之高斯混合聚类及Python实现

本文介绍了高斯混合模型聚类(GMM)的基本概念,阐述了GMM作为概率聚类方法的工作原理。通过Python代码展示了如何使用scikit-learn实现EM算法进行GMM聚类,并讨论了GMM的优缺点,包括其在概率密度估计上的应用和可能面临的计算挑战。此外,还提供了实验结果和相关资源链接。
摘要由CSDN通过智能技术生成

高斯混合模型聚类(Gaussian Mixture Mode,GMM)

高斯混合模型是一种概率式的聚类方法,它假定所有的数据样本 x x k 个混合多元高斯分布组合成的混合分布生成。

p(x)=i=1kαip(x|μi,Σi)(1.1) (1.1) p ( x ) = ∑ i = 1 k α i ⋅ p ( x | μ i , Σ i )

其中 p(x|μ,Σ) p ( x | μ , Σ ) 为服从高斯分布的n维随机向量 x x 的概率密度函数
(1.2) p ( x ) = 1 ( 2 π ) n 2 | Σ | 1 2 e 1 2 ( x μ ) T Σ 1 ( x μ )

python 代码实现如下:
# 高斯分布的概率密度函数
def prob(x, mu, sigma):
    n = np.shape(x)[1]
    expOn = float(-0.5 * (x - mu) * (sigma.I) * ((x - mu).T))
    divBy = pow(2 * np.pi, n / 2) * pow(np.linalg.det(sigma), 0.5)  # np.linalg.det 计算矩阵的行列式
    return pow(np.e, expOn) / divBy

式(1.2)中 μ μ n n 维均值向量 Σ n×n n × n 的协方差矩阵,因此式(1.1)中 μi μ i Σi Σ i 是第 i i 个高斯混合成分的参数,而 α i > 0 为相应的“混合系数”(mixture coefficient), ki=1αi=1 ∑ i = 1 k α i = 1 <

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值