高斯混合模型聚类(Gaussian Mixture Mode,GMM)
高斯混合模型是一种概率式的聚类方法,它假定所有的数据样本 x x 由
个混合多元高斯分布组合成的混合分布生成。
p(x)=∑i=1kαi⋅p(x|μi,Σi)(1.1) (1.1) p ( x ) = ∑ i = 1 k α i ⋅ p ( x | μ i , Σ i )
其中 p(x|μ,Σ) p ( x | μ , Σ ) 为服从高斯分布的n维随机向量 x x 的概率密度函数
python 代码实现如下:
# 高斯分布的概率密度函数
def prob(x, mu, sigma):
n = np.shape(x)[1]
expOn = float(-0.5 * (x - mu) * (sigma.I) * ((x - mu).T))
divBy = pow(2 * np.pi, n / 2) * pow(np.linalg.det(sigma), 0.5) # np.linalg.det 计算矩阵的行列式
return pow(np.e, expOn) / divBy
式(1.2)中 μ μ 是 n n 维均值向量 是 n×n n × n 的协方差矩阵,因此式(1.1)中 μi μ i 与 Σi Σ i 是第 i i 个高斯混合成分的参数,而 为相应的“混合系数”(mixture coefficient), ∑ki=1αi=1 ∑ i = 1 k α i = 1 <