原型聚类之学习向量量化及Python实现

学习向量量化(LVQ)是一种有监督的原型聚类算法,利用类别标记指导原型向量的更新。LVQ算法流程包括初始化原型向量、选择样本、计算距离、更新最近原型向量等步骤。在Python中,可以通过欧几里得距离计算样本与原型向量的距离,并依据类别标记调整原型位置。该文提供LVQ算法的简单应用实例和代码参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习向量量化(Learning Vector Quantization)

学习向量量化(Learning Vector Quantization,简称LVQ)属于原型聚类,即试图找到一组原型向量来聚类,每个原型向量代表一个簇,将空间划分为若干个簇,从而对于任意的样本,可以将它划入到它距离最近的簇中,不同的是LVQ假设数据样本带有类别标记,因此可以利用这些类别标记来辅助聚类。
学习向量量化算法如下 ( 摘自于周志华《机器学习》)


输入:样本集 D={ (x1,y1),(x2,y2),...,(xm,ym)} D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } ;
   原型向量个数 q q ,各原型向量预设的类别标记 { t 1 , t 2 , . . . , t q }
   学习率 η(0,1) η ∈ ( 0 , 1 )

过程:
1. 初始化一组原型向量 { p1,p2,...,pq} { p 1 , p 2 , . . . , p q }
2. repeat
3.  从样本集中随机选择样本 (xj,yj) ( x j , y j ) ;
4.  计算样本 xj x j pj

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值