学习向量量化(Learning Vector Quantization)
学习向量量化(Learning Vector Quantization,简称LVQ)属于原型聚类,即试图找到一组原型向量来聚类,每个原型向量代表一个簇,将空间划分为若干个簇,从而对于任意的样本,可以将它划入到它距离最近的簇中,不同的是LVQ假设数据样本带有类别标记,因此可以利用这些类别标记来辅助聚类。
学习向量量化算法如下 ( 摘自于周志华《机器学习》)
输入:样本集 D={
(x1,y1),(x2,y2),...,(xm,ym)}; D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } ;
原型向量个数 q q ,各原型向量预设的类别标记
学习率 η∈(0,1) η ∈ ( 0 , 1 )
过程:
1. 初始化一组原型向量 {
p1,p2,...,pq} { p 1 , p 2 , . . . , p q }
2. repeat
3. 从样本集中随机选择样本 (xj,yj) ( x j , y j ) ;
4. 计算样本 xj x j 与 pj