安装pytorch-gpu时会默认安装cpu版本

安装PyTorchGPU版本时,可能因默认安装了cpuonly库导致实际为CPU版本。解决方法包括检查并卸载cpuonly库,通过conda命令进行相应操作,最终确认torch.cuda.is_available()返回True,表明已成功切换到GPU版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装pytorch-gpu版本时会默认安装cpu版本

使用官网中给出的指令安装pytorch-cuda版本,但是安装完成后发现依旧为cpu版本。

原因

在安装pytorch时会默认安装一个名为***cpuonly***的库,这使pytorch以及torchvision的版本都默认为cpu版,即便你在安装时给出***cudatoolkit***版本也无效。

解决

1、在完成所有安装后,发现为cpu版本,先检查是否存在cpuonly库,在激活虚拟环境的命令行输入:

conda list

2、并不是每个人都会有cpuonly,例如本小白库中并没有cpuonly,但是pytorch版本仍为cpu

在这里插入图片描述
3、出现这种i情况,只需先将cpuonly安装,再卸载即可,命令行输入(若存在cpuonly库,直接跳转至第四步)

conda install cpuonly

4、接下来再执行

conda uninstall cpuonly

5、本小白执行结果如下:
在这里插入图片描述
6、可以看到cpu版本会转为gpu版本,输入y确认即可。
7、安装完成后重新检查:

python
import torch
print(torch.cuda.is_available())

8、返回True,即为gpu版本
在这里插入图片描述

### Windows 11 上安装 PyTorch-GPU 及其对应的 CUDA 配置 #### 虚拟环境准备 为了确保安装过程不会影响其他项目依赖,建议先创建一个新的 Conda 或虚拟环境。以下是基于 Conda 的方法: ```bash conda create -n torch-gpu python=3.9 conda activate torch-gpu ``` 上述命令会创建名为 `torch-gpu` 的新环境并激活它[^4]。 --- #### 显卡驱动更新 在安装 PyTorch-GPU 前,需确认已安装最新的 NVIDIA 显卡驱动程序。可以通过访问 [NVIDIA 官方网站](https://www.nvidia.com/Download/index.aspx),输入显卡型号和操作系统信息来获取最新驱动版本。如果未安装合适的驱动,则可能导致后续 CUDA 功能无法正常工作。 --- #### CUDA 工具包安装 根据引用内容可知,CUDA 是支持 GPU 加速的关键工具包。推荐选择稳定且兼容性强的 CUDA 版本(如 CUDA 11.3)。具体步骤如下: 1. 访问 [NVIDIA CUDA 下载页面](https://developer.nvidia.com/cuda-downloads) 并选择适合的操作系统(Windows 11)以及目标架构。 2. 执行下载后的安装文件,默认选项即可完成基本功能部署。 3. 验证 CUDA 是否成功安装: ```cmd nvcc -V ``` 如果返回类似以下信息则表示安装成功: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin\nvcc.exe: fatal error: no input files compilation terminated. ``` 此外,可通过检查环境变量进一步验证设置是否正确: ```cmd set cuda ``` 此命令应显示路径指向 CUDA 工具包所在目录[^3]。 --- #### PyTorch GPU 版本安装 一旦 CUDA 准备完毕,便可着手安装 PyTorchGPU 支持版本。官方提供了便捷查询链接帮助匹配特定需求组合下的最佳安装指令:<https://pytorch.org/get-started/locally/> 。对于采用 Conda 渠道的情况,通常执行下面语句即能满足多数场景的要求: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia ``` 这里特别指定了 `cudatoolkit=11.3` 参数以同步所选 CUDA 版本号[^2]。 完成后可测试导入模块是否无误: ```python import torch print(torch.cuda.is_available()) # 应输出 True 表明检测到可用 GPU 设备 print(torch.version.cuda) # 输出当前加载之 CUDA 编译版本字符串 ``` --- #### 注意事项 仅当计算机配备由 NVIDIA 提供图形处理单元 (GPU) 时才可行尝试以上流程;否则应当考虑转而设立纯 CPU 运作模式下运行框架实例。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值