小波系框架

框架的概念

定义1 V V V 是一个有限维向量空间,当 V = s p a n { e k } k = 1 m V=span\{ e_k \}_{k=1}^m V=span{ek}k=1m { e k } k = 1 m \{ e_k \}_{k=1}^m {ek}k=1m 是线性相关的,(即如果 ∑ k = 1 m c k e k = 0 \sum_{k=1}^mc_ke_k=0 k=1mckek=0 对于标量系数 { c k } k = 1 m \{ c_k \}_{k=1}^m {ck}k=1m 成立,那么对于任意的 k = 1 , . . . , m , c k = 0 k=1,...,m,c_k=0 k=1,...,m,ck=0 )时,称在 V V V 的序列 { e k } k = 1 m \{e_k\}_{k=1}^m {ek}k=1m V V V 的基。

那么对于任意的 f ∈ V f\in V fV 都有唯一的基表达式,即存在唯一的标量系数 { c k } k = 1 m \{c_k\}_{k=1}^m {ck}k=1m 使得 f = ∑ k = 1 m c k e k . f=\sum_{k=1}^{m}c_ke_k. f=k=1mckek.如果 { e k } k = 1 m \{e_k\}_{k=1}^m {ek}k=1m 是标准正交基, ⟨ e k , e j ⟩ = δ k , j = { 1 if   k = j 0 if   k ≠ j , \lang e_k,e_j \rang=\delta_{k,j}=\begin{cases}1&\text{if }\space k=j \\ 0&\text{if }\space k\not = j \end{cases}, ek,ej=δk,j={10if  k=jif  k=j,那么系数 { c k } k = 1 m \{c_k\}_{k=1}^m {ck}k=1m 很容易得到: ⟨ f , e j ⟩ = ⟨ ∑ k = 1 m c k e k , e j ⟩ = ∑ k = 1 m c k ⟨ e k , e j ⟩ = c j , f = ∑ k = 1 m ⟨ f , e k ⟩ e k . \lang f,e_j\rang=\lang \sum_{k=1}^m c_k e_k,e_j \rang=\sum_{k=1}^m c_k \lang e_k,e_j \rang =c_j,\\f=\sum_{k=1}^m \lang f,e_k \rang e_k. f,ej=k=1mckek,ej=k=1mckek,ej=cj,f=k=1mf,ekek.

定义2 V V V 是一个可分的希尔伯特空间,如果存在常数 A , B > 0 A,B>0 A,B>0 使得 A ∣ ∣ f ∣ ∣ 2 2 ≤ ∑ k ∈ I ∣ ⟨ f , f k ⟩ ∣ 2 ≤ B ∣ ∣ f ∣ ∣ 2 , ∀ ∈ V . A||f||_2^2 \leq\sum_{k\in I}|\lang f,f_k\rang|^2\leq B||f||^2,\forall \in V. A∣∣f22kIf,fk2B∣∣f2,V.则称在 V V V 上的一个可数元素族 { f k } k ∈ I \{f_k\}_{k\in I} {fk}kI V V V 的一个框架。常数 A , B A,B A,B 称为框架界。

命题1.1如果 { f k } k = 1 m \{f_k\}_{k=1}^m {fk}k=1m V V V 的一个序列,那么 { f k } k = 1 m \{f_k\}_{k=1}^m {fk}k=1m s p a n { f k } k = 1 m span\{ f_k \}_{k=1}^m span{fk}k=1m 的一个框架。

命题1.2 V V V 中的元素族 { f k } k = 1 m \{f_k\}_{k=1}^m {fk}k=1m V V V 的框架当且仅当 s p a n { f k } k = 1 m = V span\{f_k \}_{k=1}^m=V span{fk}k=1m=V
{ f k } k = 1 m \{f_k\}_{k=1}^m {fk}k=1m 是向量空间 V V V 的一个框架,定义线性映射为: T : C m → V , T { c k } k = 1 m = ∑ k = 1 m c k f k . T:C^m\to V,T\{c_k\}_{k=1}^m=\sum_{k=1}^{m}c_kf_k. T:CmV,T{ck}k=1m=k=1mckfk. T T T 被称为合成算子。定义它的伴随算子为: T ∗ : V → C m , T ∗ f = { ⟨ f , f k ⟩ } k = 1 m , T^*:V \to C^m,T^*f=\{\lang f,f_k \rang\}_{k=1}^m, T:VCm,Tf={⟨f,fk}k=1m,通过复合 T T T T ∗ T^* T 得到框架算子: S : V → V , S f = T T ∗ f = ∑ k = 1 m ⟨ f , f k ⟩ f k . ⟨ S f , f ⟩ = ∑ k = 1 m ∣ ⟨ f , f k ⟩ ∣ 2 , f ∈ V . S:V\to V,Sf=TT^*f=\sum_{k=1}^m\lang f,f_k \rang f_k .\\ \lang Sf,f \rang=\sum_{k=1}^m| \lang f,f_k \rang |^2,f\in V. S:VV,Sf=TTf=k=1mf,fkfk.Sf,f=k=1mf,fk2,fV.如果定义2中的 A = B A=B A=B ,即 ∑ k = 1 m ∣ ⟨ f , f k ⟩ ∣ 2 = A ∣ ∣ f ∣ ∣ 2 , ∀ f ∈ V . \sum_{k=1}^m|\lang f,f_k \rang|^2=A||f||^2,\forall f \in V. k=1mf,fk2=A∣∣f2,fV.这个框架 { f k } k = 1 m \{f_k\}_{k=1}^m {fk}k=1m称为紧框架,A称为框架界。

命题1.3假设 { f k } k = 1 m \{ f_k\}_{k=1}^m {fk}k=1m V V V 的一个紧框架,且框架界为 A A A,那么 S = A I S=AI S=AI(这里 I I I V V V 的任意算子),并且 f = 1 A ∑ k = 1 m ⟨ f , f k ⟩ f k , ∀ f ∈ V . f=\frac {1}{A}\sum_{k=1}^m \lang f,f_k \rang f_k,\forall f \in V. f=A1k=1mf,fkfk,fV.在空间 L 2 ( R ) L^2(R) L2(R)的小波框架中起重要作用的三个算子:
1.平移算子 T a ( a ∈ R ) : L 2 ( R ) → L 2 ( R ) , ( T a f ) ( x ) = f ( x − a ) ; T_a(a\in R):L^2(R)\to L^2(R),(T_af)(x)=f(x-a); Ta(aR):L2(R)L2(R),(Taf)(x)=f(xa);

2.调制算子 E b ( b ∈ R ) : L 2 ( R ) → L 2 ( R ) , ( E b f ) ( x ) = e 2 π i b x f ( x ) ; E_b(b\in R):L^2(R)\to L^2(R),(E_bf)(x)=e^{2\pi i b x}f(x); Eb(bR):L2(R)L2(R),(Ebf)(x)=e2πibxf(x);

3.伸缩算子 D a ( a ≠ 0 ) : L 2 ( R ) → L 2 ( R ) , ( D a f ) ( x ) = f ( x / a ) / ∣ a ∣ . D_a(a\not = 0):L^2(R)\to L^2(R),(D_af)(x)=f(x/a)/\sqrt{|a|}. Da(a=0):L2(R)L2(R),(Daf)(x)=f(x/a)/a .

命题1.4平移算子满足以下条件:
1.对于所有 a ∈ R a \in R aR , T a T_a Ta 是酉算子。

2.对于每一个 f ∈ L 2 ( R ) , y ↔ T y f f\in L^2(R),y \leftrightarrow T_yf fL2(R)yTyf R R R L 2 ( R ) L^2(R) L2(R) 是连续的。

这对于 E b ( b ∈ R ) E_b(b\in R) Eb(bR) D a ( a ≠ 0 ) D_a(a\not = 0) Da(a=0) 同样成立。

L 2 ( R ) L^2(R) L2(R) 中的函数可以通过算子 T a T_a Ta , E b E_b Eb D a D_a Da 的一些组合得到:
T a E b f ( x ) = e − 2 π i b a E b T a f ( x ) = E 2 π i b ( x − a ) f ( x − a ) , T_aE_bf(x)=e^{-2\pi i b a}E_b T_a f(x)=E^{2\pi i b(x-a)}f(x-a), TaEbf(x)=e2πibaEbTaf(x)=E2πib(xa)f(xa), T b D a f ( x ) = D a T b / a f ( x ) = f ( x / a − b / a ) ∣ a ∣ T_bD_af(x)=D_aT_{b/a}f(x)=f(x/a-b/a)\sqrt{|a|} TbDaf(x)=DaTb/af(x)=f(x/ab/a)a D a E b f ( x ) = e − 2 π i x b / a f ( x / a ) / ∣ a ∣ = E b / a D a f ( x ) . D_aE_bf(x)=e^{-2\pi i x b/a}f(x/a)/\sqrt {|a|}=E_{b/a}D_af(x). DaEbf(x)=e2πixb/af(x/a)/a =Eb/aDaf(x).
在小波分析中一个特别重要的算子 D 1 / 2 D_{1/2} D1/2,简单写为: D f ( x ) : = 2 1 / 2 f ( 2 x ) . Df(x):=2^{1/2}f(2x). Df(x):=21/2f(2x).
T a T_a Ta D a D_a Da 的复合关系能够表示为: T k D j = D j T 2 j k T_k D^j=D^jT_{2^jk} TkDj=DjT2jk D j T k = T 2 − j k D j , j , k ∈ Z . D^jT_k=T_{2^{-j}k}D^j,j,k\in Z. DjTk=T2jkDj,j,kZ.
常常将 Fourier 变换用于小波系中,在这样的情况下, F T a = E − a F , F E a = T a F , F D a = D 1 / a F , F D = D − 1 F . FT_a=E_{-a}F,FE_a=T_aF,FD_a=D_{1/a}F,FD=D^{-1}F. FTa=EaF,FEa=TaF,FDa=D1/aF,FD=D1F.

小波框架

Ψ ∈ L 2 ( R ) {\Psi}\in L^2(R) ΨL2(R),如果 C Ψ : = ∫ − ∞ + ∞ ∣ Ψ ^ ( r ) ∣ 2 ∣ r ∣ d r < ∞ . C_\Psi:=\int_{-\infin}^{+\infin} \frac{|\hat \Psi(r)|^2}{|r|}dr<\infin. CΨ:=+rΨ^(r)2dr<∞.则称 Ψ ( x ) \Psi(x) Ψ(x) 满足容许性条件。给出一个可容许函数 Ψ ∈ L 2 ( R ) \Psi\in L^2(R) ΨL2(R),定义关于 Ψ ( x ) \Psi(x) Ψ(x)的连续小波变换和函数 f ( x ) ∈ L 2 ( R ) f(x)\in L^2(R) f(x)L2(R) 作为 W Ψ ( f ) W_\Psi(f) WΨ(f) 的两个变量 W Ψ ( f ) ( a , b ) = ⟨ f , Ψ a , b ⟩ = ∫ − ∞ + ∞ f ( x ) Ψ ( ( x − b ) / a ) ‾ / ∣ a ∣ 1 / 2 d x . W_\Psi(f)(a,b)=\lang f,\Psi^{a,b} \rang=\int_{-\infin}^{+\infin}f(x)\overline {\Psi((x-b)/a)}/|a|^{1/2}dx. WΨ(f)(a,b)=f,Ψa,b=+f(x)Ψ((xb)/a)/∣a1/2dx.

命题2.1假设 Ψ ( x ) \Psi(x) Ψ(x)是可容许的,那么对于所有函数 f ( x ) , g ( x ) ∈ L 2 ( R ) , f(x),g(x)\in L^2(R), f(x),g(x)L2(R), ∫ − ∞ + ∞ ∫ − ∞ + ∞ W Ψ ( f ) ( a , b ) W Ψ ( g ) ( a , b ) ‾ d a d b a 2 = C Ψ ⟨ f , g ⟩ . \int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}W_\Psi(f)(a,b)\overline{W_\Psi(g)(a,b)}\frac {dadb}{a^2}=C_\Psi\lang f,g \rang. ++WΨ(f)(a,b)WΨ(g)(a,b)a2dadb=CΨf,g.根据函数 Ψ a , b ( x ) : = ( T a D a Ψ ) ( x ) = ( D a j T k b Ψ ) ( x ) = Ψ ( ( x − b ) / a ) / ∣ a ∣ 1 / 2 \Psi^{a,b}(x):=(T_aD_a\Psi)(x)=(D_{a^j}T_{kb}\Psi)(x)=\Psi((x-b)/a)/|a|^{1/2} Ψa,b(x):=(TaDaΨ)(x)=(DajTkbΨ)(x)=Ψ((xb)/a)/∣a1/2,平移参数 a a a 和 伸缩参数 b b b ,得到 ( T k b a j D a , Ψ ) ( x ) = ( D a j T k b Ψ ) ( x ) = Ψ ( x / a j − k b ) / a j / 2 , j , k , ∈ Z . (T_{kba^j}D_a,\Psi)(x)=(D_{a^j}T_{kb}\Psi)(x)=\Psi(x/a^j-kb)/a^{j/2},j,k,\in Z. (TkbajDa,Ψ)(x)=(DajTkbΨ)(x)=Ψ(x/ajkb)/aj/2,j,k,Z.通过替换参数 i → − j i \to -j ij,得到 ( T k b a j D a , Ψ ) j , k ∈ Z = { a j / 2 Ψ ( a j x − k b ) } j , k ∈ Z . (T_{kba^j}D_a,\Psi)_{j,k\in Z}=\{ a^{j/2}\Psi(a^jx-kb) \}_{j,k\in Z}. (TkbajDa,Ψ)j,kZ={aj/2Ψ(ajxkb)}j,kZ.

命题2.2 a > 1 , b > 0 , Ψ ∈ L 2 ( R ) a>1,b>0,\Psi \in L^2(R) a>1,b>0,ΨL2(R),如果 { a j / 2 Ψ ( a j x − k b ) } j . k ∈ Z \{ a^{j/2}\Psi(a^jx-kb) \}_{j.k \in Z} {aj/2Ψ(ajxkb)}j.kZ 是一个框架,且框架界为 A , B A,B A,B ,那么 b A ≤ ∑ j ∈ Z ∣ Ψ ^ ( a j γ ) ∣ 2 ≤ b B , bA\leq \sum_{j\in Z}|\hat \Psi(a^j \gamma )|^2\leq bB, bAjZΨ^(ajγ)2bB,

定义3假设 { Ψ j , k ( x ) } j , k ∈ Z \{ \Psi_{j,k}(x) \}_{j,k \in Z} {Ψj,k(x)}j,kZ L 2 ( R ) L^2(R) L2(R) 的一个紧小波框架,框架界是 A A A ,那么 f = 1 A ∑ j , k ∈ Z ⟨ f , Ψ j , k ⟩ Ψ j , k , ∀ f ∈ L 2 ( R ) . f=\frac 1 A \sum_{j,k\in Z}\lang f,\Psi_{j,k} \rang \Psi_{j,k},\forall f \in L^2(R). f=A1j,kZf,Ψj,kΨj,k,fL2(R).

命题2.3对于任意奇整数 q q q ,一个函数 Ψ ( x ) ∈ L 2 ( R ) \Psi(x)\in L^2(R) Ψ(x)L2(R) 生成一个紧小波框架 { Ψ j , k } j , k ∈ Z \{ \Psi_{j,k} \}_{j,k \in Z} {Ψj,k}j,kZ,框架界为 A A A,当且仅当下列等式成立: ∑ j ∈ Z ∣ Ψ ^ ( 2 j γ ) ∣ 2 = A , ∑ j = 0 ∞ Ψ ^ ( 2 j γ ) Ψ ( 2 j ( γ + q ) ) ‾ = 0 , ∀ 奇整数 q . \sum_{j\in Z} |\hat \Psi(2^j \gamma)|^2=A,\\ \sum_{j=0}^\infin \hat \Psi(2^j\gamma)\overline {\Psi(2^j(\gamma+q))}=0,\forall 奇整数 q. jZΨ^(2jγ)2=A,j=0Ψ^(2jγ)Ψ(2j(γ+q))=0,奇整数q.

半正交小波框架

s s s R n R^n Rn 上的一个向量,一个单一平移算子 T s T_s Ts 定义为 ( T s f ) ( t ) = f ( t − s ) , ∀ f ∈ L 2 ( R n ) , t ∈ R n . (T_sf)(t)=f(t-s),\forall f\in L^2(R^n),t\in R^n. (Tsf)(t)=f(ts),fL2(Rn),tRn.整数平移族 { T k f : k ∈ Z n } \{T_kf:k \in Z^n\} {Tkf:kZn} T ( f ) T(f) T(f) 表示。

E d ( 2 ) E_d^{(2)} Ed(2) 表示扩张矩阵 A A A 使得 ∣ d e t   A ∣ = 2 |det\space A|=2 det A=2,对于 A ∈ E d ( 2 ) A\in E_d^{(2)} AEd(2),在 L 2 ( R ) L^2(R) L2(R) 上定义单一算子 D D D 为: ( D f ) ( t ) = ∣ d e t   A ∣ 1 / 2 f ( A t ) , ∀ f ∈ L 2 ( R n ) , t ∈ R n . (Df)(t)=|det\space A|^{1/2}f(At),\forall f \in L^2(R^n),t \in R^n. (Df)(t)=det A1/2f(At),fL2(Rn),tRn.
如果 f ∈ L 2 ( R n ) ∩ L 1 ( R n ) f\in L^2(R^n) \cap L^1(R^n) fL2(Rn)L1(Rn),那么定义它的 Fourier 变换: f ^ ( x ) = ∫ R d e − i 2 π ⟨ s , t ⟩ f ( t ) d t , \hat f(x)=\int_{R^d}e^{-i2\pi \lang s,t \rang}f(t)dt, f^(x)=Rdei2πs,tf(t)dt,这里 ⟨ s , t ⟩ \lang s,t \rang s,t 表示 R n R^n Rn 内积。有相关表示: s u p p f = { s ∈ R n : f ^ ( s ) ≠ 0 } . suppf=\{ s \in R^n:\hat f(s) \not= 0 \}. suppf={sRn:f^(s)=0}.对于任意 f ∈ L 2 ( R n ) , f\in L^2(R^n), fL2(Rn), T ^ k f ( ξ ) = e − 2 π i ( k , ξ ) f ^ ( ξ ) , ∀ k ∈ Z n , \hat T_kf(\xi)=e^{-2\pi i (k,\xi)}\hat f(\xi),\forall k \in Z^n, T^kf(ξ)=e2πi(k,ξ)f^(ξ),kZn, D ^ j f ( ξ ) = 2 − j / 2 f ^ ( B − j ξ ) , j ∈ Z , \hat D^jf(\xi)=2^{-j/2}\hat f(B^{-j}\xi),j \in Z, D^jf(ξ)=2j/2f^(Bjξ),jZ,特别地, D ^ f ( ξ ) = 2 − 1 / 2 f ^ ( B − 1 ξ ) . \hat Df(\xi)=2^{-1/2}\hat f(B^{-1}\xi). D^f(ξ)=21/2f^(B1ξ).

命题3.1 B ∈ E d ( 2 ) B\in E_d^{(2)} BEd(2) 是任意整数矩阵使得 ∣ d e t   B ∣ = 2 |det \space B|=2 det B=2,那么组 Z n / B Z n Z^n/BZ^n Zn/BZn B − 1 Z n / Z n B^{-1}Z^n/Z^n B1Zn/Zn 是同构的, Z n / B Z n Z^n/BZ^n Zn/BZn 等于 2。特别地,如果 a ∈ Z n / B Z n , β = B − 1 α a\in Z^n/BZ^n,\beta=B^{-1}\alpha aZn/BZn,β=B1α,那么 Z n = B Z n ∪ ( B Z n + α ) , Z n = Z n ∪ ( Z n + β ) Z^n=BZ^n \cup (BZ^n+\alpha),Z^n=Z^n \cup (Z^n+\beta) Zn=BZn(BZn+α),Zn=Zn(Zn+β)

定义4如果在 Hilbert 空间 H 存在一个元素族 { φ j : j ∈ J } \{\varphi _j: j\in J\} {φj:jJ},常数 A , B , 0 ≤ A ≤ B < ∞ A,B,0\leq A\leq B<\infin A,B,0AB< 使得 A ∣ ∣ f ∣ ∣ 2 ≤ ∑ j ∈ J ∣ ⟨ f , φ j ⟩ ∣ 2 ≤ B ∣ ∣ f ∣ ∣ 2 , ∀ f ∈ H . A||f||^2\leq \sum_{j\in J}|\lang f,\varphi_j \rang|^2\leq B||f||^2,\forall f \in H. A∣∣f2jJf,φj2B∣∣f2,fH. 则称 { φ j : j ∈ J } \{\varphi_j:j\in J \} {φj:jJ} 是 H 的一个框架。对于一个函数 Ψ ( x ) ∈ L 2 ( R n ) \Psi(x)\in L^2(R^n) Ψ(x)L2(Rn),定义 Ψ \Psi Ψ 为: Ψ = { Ψ j , k ( x ) / Ψ j , k ( x ) = 2 j / 2 Ψ ( A j x − k ) , j ∈ Z , k ∈ Z n } . \Psi=\{\Psi_{j,k}(x)/\Psi_{j,k}(x)=2^{j/2}\Psi(A^jx-k),j\in Z,k \in Z^n \}. Ψ={Ψj,k(x)/Ψj,k(x)=2j/2Ψ(Ajxk),jZ,kZn}.

定义5如果 Ψ = { Ψ j , k ( x ) / Ψ j , k ( x ) = 2 j / 2 Ψ ( A j x − k ) , j ∈ Z , k ∈ Z n } . \Psi=\{\Psi_{j,k}(x)/\Psi_{j,k}(x)=2^{j/2}\Psi(A^jx-k),j\in Z,k \in Z^n \}. Ψ={Ψj,k(x)/Ψj,k(x)=2j/2Ψ(Ajxk),jZ,kZn}. L 2 ( R n ) L^2(R^n) L2(Rn) 的一个框架,则称 Ψ ∈ L 2 ( R n ) \Psi \in L^2(R^n) ΨL2(Rn) 是一个小波框架生成元。

定义6如果 Ψ = { Ψ j , k ( x ) / Ψ j , k ( x ) = 2 j / 2 Ψ ( A j x − k ) , j ∈ Z , k ∈ Z n } . \Psi=\{\Psi_{j,k}(x)/\Psi_{j,k}(x)=2^{j/2}\Psi(A^jx-k),j\in Z,k \in Z^n \}. Ψ={Ψj,k(x)/Ψj,k(x)=2j/2Ψ(Ajxk),jZ,kZn}. L 2 ( R n ) L^2(R^n) L2(Rn) 的一个 Parseval 框架,则称 Ψ ∈ L 2 ( R n ) \Psi \in L^2(R^n) ΨL2(Rn) 是一个 Parseval 小波框架。

定义7如果对于一个小波框架, D j 1 T k 1 Ψ ⊥ D j 2 T k 2 Ψ , j 1 ≠ j 2 ; k 1 , k 2 ∈ Z n D^{j_1}T_{k_1}\Psi \perp D^{j_2}T_{k_2}\Psi,j_1\not=j_2;k_1,k_2\in Z^n Dj1Tk1ΨDj2Tk2Ψ,j1=j2;k1,k2Zn 成立,则称这个小波框架是半正交的。

定义8 ( V j ) , j ∈ Z (V_j),j\in Z (Vj),jZ L 2 ( R n ) L^2(R^n) L2(Rn) 的闭子空间的一个序列满足 V j ⊂ V j + 1 V_j \sub V_{j+1} VjVj+1; ⋃ j ∈ Z ‾ V j = L 2 ( R n ) \overline {\bigcup \limits_{j \in Z}}V_j=L^2(R^n) jZVj=L2(Rn); ⋂ j ∈ Z V j = { 0 } \bigcap\limits_{j\in Z}V_j=\{ 0 \} jZVj={0}; f ∈ V j ⇔ f ( A ⋅ ) ∈ V j + 1 , j ∈ Z ; f\in V_j\Harr f(A\centerdot)\in V_{j+1},j\in Z; fVjf(A)Vj+1,jZ; 核空间 V 0 V_0 V0 是平移不变的即 f ∈ V 0 ⇒ T k f ∈ V 0 , ∀ k ∈ Z n f\in V_0 \Rightarrow T_kf\in V_0,\forall k\in Z^n fV0TkfV0,kZn,这是广义多辨分析(GMRA)。

命题3.2假设 Ψ = { ψ j , k ( x ) ∣ ψ j , k ( x ) = 2 j / 2 ψ ( A j x − k ) , j ∈ Z , k ∈ Z n } \Psi=\{ \boldsymbol\psi_{j,k}(x)|\boldsymbol\psi_{j,k}(x)=2^{j/2}\boldsymbol \psi(A^jx-k),j\in Z,k\in Z^n \} Ψ={ψj,k(x)ψj,k(x)=2j/2ψ(Ajxk),jZ,kZn} L 2 ( R n ) L^2(R^n) L2(Rn) 上的一个小波框架, T ( ψ ) T(\boldsymbol \psi) T(ψ) 是闭子空间 W 0 = { f : s u p p f ^ ⊂ M } W_0=\{ f:supp \hat f \sub M \} W0={f:suppf^M} 的小波框架,这里 ψ ^ = M \hat {\boldsymbol \psi}=M ψ^=M。那么 Ψ \Psi Ψ L 2 ( R n ) L^2(R^n) L2(Rn)的半正交小波框架当且仅当 s u p p ψ j , 0 ^ ∩ s u p p ψ l , 0 ^ , ∀ j , l ∈ Z , j ≠ l supp \hat {\boldsymbol \psi_{j,0}}\cap supp\hat {\boldsymbol \psi_{l,0}},\forall j,l \in Z,j \not = l suppψj,0^suppψl,0^,j,lZ,j=l成立。

分数阶小波框架

定义分数阶母小波: Ψ θ , γ , s = Ψ ( ( t − γ ) / s ) e − ( i ( t 2 − γ 2 ) cot ⁡ θ ) / 2 / s , γ ∈ R , s > 0 , \Psi_{\theta ,\gamma,s}=\Psi((t-\gamma)/s)e^{-(i(t^2-\gamma^2)\cot \theta)/2}/\sqrt s,\gamma\in R,s>0, Ψθ,γ,s=Ψ((tγ)/s)e(i(t2γ2)cotθ)/2/s ,γR,s>0,假设 Ψ θ , j , k ( t ) \Psi_{\theta,j,k}(t) Ψθ,j,k(t) 是上式的离散形式,即对函数 Ψ ∈ L 2 ( R ) \Psi \in L^2(R) ΨL2(R) 进行离散仿平移和 Chirp 调制而成, Ψ θ , j , k ( t ) = a j / 2 Ψ ( a j t − k b ) e − ( j ( t 2 − ( k a − j b ) 2 ) cot ⁡ θ ) / 2 , j , k ∈ Z . \Psi_{\theta,j,k}(t)=a^{j/2}\Psi(a^jt-kb)e^{-(j(t^2-(ka-jb)^2)\cot \theta)/2},j,k\in Z. Ψθ,j,k(t)=aj/2Ψ(ajtkb)e(j(t2(kajb)2)cotθ)/2,j,kZ.函数 f ( x ) f(x) f(x) 的 FRFT 定义为 f ^ θ ( ξ ) = ( F θ f ) ( ξ ) = ∫ R K θ ( ξ , t ) f ( f ) d t , \hat f^\theta(\xi)=(F^\theta f)(\xi)=\int_R K^\theta(\xi,t)f(f)dt, f^θ(ξ)=(Fθf)(ξ)=RKθ(ξ,t)f(f)dt,其中核函数为 K θ ( ξ , t ) = { 1 − i cot ⁡ θ e i ( t 2 + ξ 2 ) / 2 cot ⁡ θ − i ξ t csc ⁡ θ , θ ≠ n π , δ ( ξ − t ) , θ = 2 n π , δ ( ξ + t ) , θ = 2 n π ± π , K^\theta(\xi,t)=\begin{cases} \sqrt{1-i\cot \theta}e^{i(t^2+\xi^2)/2}\cot \theta-i\xi t\csc \theta,\theta \not= n\pi, \\ \delta(\xi-t),\theta=2n\pi, \\ \delta(\xi+t),\theta=2n\pi \pm \pi, \end{cases} Kθ(ξ,t)= 1icotθ ei(t2+ξ2)/2cotθiξtcscθ,θ=,δ(ξt),θ=2,δ(ξ+t),θ=2±π,
分数阶 Fourier 变换中的参数 θ \theta θ 可以被解释为时频平面中的旋转角。分数阶 Fourier 变换(FRFT)是 Fourier 级数的一种扩展形式, ϕ θ , k = ( sin ⁡ θ − i cos ⁡ θ ) / T e − i ( ( t 2 + ( k sin ⁡ θ ) 2 ) / 2 ) cot ⁡ θ + i k t csc ⁡ θ , k ∈ Z , \phi_{\theta,k}=\sqrt{(\sin \theta-i\cos \theta)/T}e^{-i((t^2+(k \sin \theta)^2)/2)\cot \theta + i k t \csc \theta},k \in Z, ϕθ,k=(sinθicosθ)/T ei((t2+(ksinθ)2)/2)cotθ+iktcscθ,kZ,构成 L 2 ( 0 , T ) L^2(0,T) L2(0,T) 空间的一组正交基,其中 θ ∈ ( 0 , 2 π ) \theta\in (0,2\pi) θ(0,2π) 是分数阶 Fourier 变换的旋转角。

定义9如果函数族 { Ψ θ , j , k ( t ) } j , k ∈ Z \{ \Psi_{\theta,j,k}(t) \}_{j,k\in \Z} {Ψθ,j,k(t)}j,kZ 满足框架不等式 A ∣ ∣ f ∣ ∣ 2 ≤ ∑ j , k ∈ Z ∣ ⟨ f , Ψ θ , j , k ⟩ ∣ 2 ≤ B ∣ ∣ f ∣ ∣ 2 , f ∈ L 2 ( R ) , A||f||^2\leq\sum_{j,k\in\Z}|\lang f,\Psi_{\theta,j,k}\rang|^2\leq B||f||^2,f\in L^2(R), A∣∣f2j,kZf,Ψθ,j,k2B∣∣f2,fL2(R), { Ψ θ , j , k ( t ) } j , k ∈ Z \{ \Psi_{\theta,j,k}(t) \}_{j,k\in \Z} {Ψθ,j,k(t)}j,kZ L 2 ( R ) L^2(R) L2(R) 的分数阶小波框架。如果 A = B A=B A=B,则称它为紧分数阶小波框架。

命题4.1 { Ψ θ , j , k ( t ) } j , k ∈ Z \{ \Psi_{\theta,j,k}(t) \}_{j,k\in \Z} {Ψθ,j,k(t)}j,kZ 其中 a > 1 , b > 0 a>1,b>0 a>1,b>0。如果其构成 L 2 ( R ) L^2(R) L2(R) 的框架并且框架界为 A A A B B B,那么 b A ≤ 2 π sin ⁡ θ ∑ j ∈ Z ∣ F θ [ e − ( i ( ⋅ ) 2 cot ⁡ θ ) / 2 ] ( a − j ξ ) ∣ 2 ≤ b B , a . e . . bA\leq 2\pi\sin \theta \sum_{j \in \Z}|F^\theta[e^{-(i(\centerdot)^2\cot \theta)/2}](a^{-j}\xi)|^2 \leq bB,a.e.. bA2πsinθjZFθ[e(i()2cotθ)/2](ajξ)2bB,a.e..

命题4.2在命题 5.1 的条件下,函数 Ψ \Psi Ψ 满足容许性条件, C Ψ , θ = ∫ R ∣ F θ [ e − ( i ( ⋅ ) 2 cot ⁡ θ ) / 2 ] ( ξ ) ∣ / ∣ ξ ∣ 2 < ∞ . C_{\Psi,\theta}=\int_R|F^\theta[e^{-(i(\centerdot)^2\cot \theta)/2}](\xi)|/|\xi|^2<\infin. CΨ,θ=RFθ[e(i()2cotθ)/2](ξ)∣/∣ξ2<∞.

命题4.3 { Ψ θ , j , k ( t ) } j , k ∈ Z \{ \Psi_{\theta,j,k}(t) \}_{j,k\in \Z} {Ψθ,j,k(t)}j,kZ 其中 a = 2 , b = 1 a=2,b=1 a=2,b=1。集合 { Ψ θ , j , k ( t ) } j , k ∈ Z \{ \Psi_{\theta,j,k}(t) \}_{j,k\in \Z} {Ψθ,j,k(t)}j,kZ 构成 L 2 ( R ) L^2(R) L2(R) 的紧分数阶小波框架当且仅当 2 π sin ⁡ θ ∑ j , k ∈ Z ∣ F θ [ e − ( i ( ⋅ ) 2 cot ⁡ θ ) ] ( 2 − j ξ ) ∣ 2 = 1 , a . e . , ξ ∈ R , ∑ j ∈ Z F θ [ e − ( i ( ⋅ ) 2 cot ⁡ θ ) / 2 Ψ ] ‾ ( 2 − j ξ ) F θ [ e − ( i ( ⋅ ) 2 cot ⁡ θ ) / 2 Ψ ] ( 2 − j ( ξ + k 2 π sin ⁡ θ ) ) = 0 , a . e . , ξ ∈ R , 2\pi \sin \theta \sum_{j,k \in \Z}|F^\theta[e^{-(i(\centerdot)^2\cot \theta)}](2^{-j}\xi)|^2=1,a.e.,\xi \in \R,\\ \sum_{j\in Z}\overline {F^{\theta}[e^{-(i(\centerdot)^2\cot \theta)/2}\Psi]}(2^{-j}\xi)F^\theta [e^{-(i(\centerdot)^2\cot \theta)/2}\Psi](2^{-j}(\xi+k2\pi \sin \theta))=0,a.e.,\xi\in \R, 2πsinθj,kZFθ[e(i()2cotθ)](2jξ)2=1,a.e.,ξR,jZFθ[e(i()2cotθ)/2Ψ](2jξ)Fθ[e(i()2cotθ)/2Ψ](2j(ξ+k2πsinθ))=0,a.e.,ξR,对任意的 k ∈ 2 Z + 1 k\in 2Z+1 k2Z+1 成立。

Gabor 框架

Gabor 框架是框架理论中非常重要的典型框架,它与小波框架有着一定的区别。
定义10 a , b > 0 a,b>0 a,b>0,某确定函数 g ( x ) ∈ L 2 ( R ) g(x)\in L^2(R) g(x)L2(R),则形如 { E m b T n a g } m , n ∈ Z = { e 2 π i m b x g ( x − n a ) } m , n ∈ Z \{E_{mb}T_{na}g\}_{m,n\in Z}=\{ e^{2\pi i m b x} g(x-na)\}_{m,n \in Z} {EmbTnag}m,nZ={e2πimbxg(xna)}m,nZ的框架称为 Gabor 框架,也可以称为 Wey1-Heisenberg 框架,其中函数 g ( x ) g(x) g(x) 称为窗口函数。

命题5.1 a > 0 , b > 0 , g ( x ) ∈ L 2 ( R ) , { E m b T n a g } m , n ∈ Z a>0,b>0,g(x)\in L^2(R),\{ E_{mb}T_{na}g \}_{m,n\in Z} a>0,b>0,g(x)L2(R),{EmbTnag}m,nZ 是空间 L 2 ( R ) L^2(R) L2(R) 的框架,并且框架界分别为 C , G C,G C,G ,则有 b C ≤ ∑ m ∈ Z ∣ g ( x − n a ) ∣ 2 ≤ b G bC\leq \sum_{m \in \Z}|g(x-na)|^2 \leq bG bCmZg(xna)2bG几乎处处成立。

波包框架

波包系统是 L 2 ( R n ) L^2(R^n) L2(Rn) 空间中的一个单一函数 ψ \psi ψ 的伸缩、平移和调制作用而构成的可数集。对于 a > 0 , b > 1 a>0,b>1 a>0,b>1,函数 ψ ( x ) ∈ L 2 ( R ) \psi(x)\in L^2(R) ψ(x)L2(R),定义波包系 Ψ \Psi Ψ 为: Ψ = ψ j , k , m / D A j T k b E m a ψ , j ∈ Z , k ∈ Z n , m ∈ Z n \Psi=\psi_{j,k,m}/D_A^jT_{kb}E_{ma}\psi,j\in Z,k \in Z^n,m \in Z^n Ψ=ψj,k,m/DAjTkbEmaψ,jZ,kZn,mZn其中 A ∈ M n ( Z ) A\in M_n(Z) AMn(Z) 是任意一个扩张矩阵。

定义11如果波包系 Ψ \Psi Ψ L 2 ( R n ) L^2(R^n) L2(Rn) 的一个框架,那么称它是一个波包框架;进一步,如果定义的波包系 Ψ \Psi Ψ L 2 ( R n ) L^2(R^n) L2(Rn) 中的一个 Parseval 框架,那么称它为一个波包 Parseval 框架。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞大圣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值