[深度学习]指定GPU训练模型

文章介绍了如何通过在代码中设置环境变量`CUDA_VISIBLE_DEVICES`或在终端中使用命令来指定GPU的使用,特别是指定了从第0块开始的显卡编号。这种方法对于多GPU环境的管理和任务分配至关重要。
摘要由CSDN通过智能技术生成

通过代码指定:

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2"

注意最好放在代码首行,显卡从第0块开始

通过终端命令指定:

CUDA_VISIBLE_DEVICES=1,2,3 python train.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农张三疯

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值