[大模型]Qwen2-7B-Instruct WebDemo部署

环境准备

在 Autodl 平台中租赁一个 RTX 3090/24G 显存的显卡机器。如下图所示,镜像选择 PyTorch–>2.1.0–>3.10(ubuntu20.04)–>12.1(11.3 版本以上的都可以)。

在这里插入图片描述

在这里插入图片描述

接下来,我们打开刚刚租用服务器的 JupyterLab,如下图所示,然后打开其中的终端,开始环境配置、模型下载和运行演示。

在这里插入图片描述

在这里插入图片描述

pip 换源加速下载并安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install modelscope==1.9.5
pip install "transformers>=4.37.0"
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install transformers_stream_generator==0.0.4

考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了Qwen2的环境镜像,该镜像适用于该仓库除Qwen-GPTQ和vllm外的所有部署环境。点击下方链接并直接创建Autodl示例即可。
https://www.codewithgpu.com/i/datawhalechina/self-llm/Qwen2

部署好后的终端如下

在这里插入图片描述

在这里插入图片描述

模型下载

使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

download.py代码如下

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
from modelscope import GenerationConfig
model_dir = snapshot_download('qwen/Qwen2-7B-Chat', cache_dir='/root/autodl-tmp', revision='master')

保存好后在终端运行 python /root/autodl-tmp/download.py 执行下载,下载模型需要一些时间。

python /root/autodl-tmp/download.py 

在这里插入图片描述

在这里插入图片描述

代码准备

/root/autodl-tmp路径下新建 chatBot.py 文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。

在这里插入图片描述

在这里插入图片描述

chatBot.py代码如下

# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import streamlit as st

# 在侧边栏中创建一个标题和一个链接
with st.sidebar:
    st.markdown("## Qwen2 LLM")
    "[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"
    # 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512
    max_length = st.slider("max_length", 0, 1024, 512, step=1)

# 创建一个标题和一个副标题
st.title("💬 Qwen2 Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")

# 定义模型路径
mode_name_or_path = '/root/autodl-tmp/qwen/Qwen2-7B-Chat'

# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():
    # 从预训练的模型中获取tokenizer
    tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False)
    # 从预训练的模型中获取模型,并设置模型参数
    model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype=torch.bfloat16,  device_map="auto")
  
    return tokenizer, model

# 加载Qwen2-7B-Chat的model和tokenizer
tokenizer, model = get_model()

# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "有什么可以帮您的?"}]

# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:
    st.chat_message(msg["role"]).write(msg["content"])

# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():
    # 将用户的输入添加到session_state中的messages列表中
    st.session_state.messages.append({"role": "user", "content": prompt})
    # 在聊天界面上显示用户的输入
    st.chat_message("user").write(prompt)
    
    # 构建输入     
    input_ids = tokenizer.apply_chat_template(st.session_state.messages,tokenize=False,add_generation_prompt=True)
    model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')
    generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    # 将模型的输出添加到session_state中的messages列表中
    st.session_state.messages.append({"role": "assistant", "content": response})
    # 在聊天界面上显示模型的输出
    st.chat_message("assistant").write(response)
    # print(st.session_state)

运行demo

在终端中运行以下命令,启动streamlit服务

streamlit run /root/autodl-tmp/chatBot.py --server.address 127.0.0.1 --server.port 6006

点击自定义服务

在这里插入图片描述

点开linux

在这里插入图片描述

然后win+R打开powershell

在这里插入图片描述

输入ssh与密码,按下回车至这样即可

在这里插入图片描述

在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。运行效果如下:在这里插入图片描述

### 部署Qwen2.5-VL-7B-Instruct模型于Linux环境 #### 安装依赖库 为了成功部署Qwen2.5-VL-7B-Instruct模型,在Linux环境中需先安装必要的依赖库。进入Qwen2.5-VL项目根目录并执行如下命令来完成必需组件的安装: ```bash cd Qwen2.5-VL pip install -r requirements_web_demo.txt ``` 此操作会依据`requirements_web_demo.txt`文件中的列表自动下载并安装所有所需的Python包[^2]。 #### 下载预训练模型 获取官方发布的预训练权重对于初始化该视觉语言模型至关重要。通过访问指定链接或使用API接口可以下载对应版本的模型文件至本地存储位置,确保网络连接稳定以便顺利完成这一过程[^1]。 #### 启动服务端口 当上述准备工作完成后,即可准备启动vLLM服务器以提供在线推理能力。具体做法是在终端输入以下指令开启HTTP API服务监听特定IP地址及端口号上的请求接入点: ```bash python serve.py --model qwen-2.5-vl-7b-instruct --host 0.0.0.0 --port 8000 ``` 这里假设采用默认参数运行;实际应用可根据需求调整相应选项设置。 #### 测试验证功能正常性 最后一步是对刚刚建立起来的服务实例做简单测试确认其工作状态良好。可以通过编写简单的客户端脚本来发送样例数据给到刚才开放出来的API入口处,并观察返回结果是否符合预期逻辑从而判断整个系统的可用性和准确性[^3]。 ```python import requests url = 'http://localhost:8000/infer' data = {"prompt": "描述一张图片的内容"} response = requests.post(url, json=data) print(response.json()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值