无人机视角海上漂浮物检测与人员救援检测数据集VOC+YOLO格式2903张6类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):2903

标注数量(xml文件个数):2903

标注数量(txt文件个数):2903

标注类别数:6

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["boat","buoy","human","kayak","sailboat","surfer"]

每个类别标注的框数:

boat 框数 = 692

buoy 框数 = 584

human 框数 = 33039

kayak 框数 = 1430

sailboat 框数 = 156

surfer 框数 = 3889

总框数:39790

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:

标注例子:


 

在使用PyTorch框架整合YOLOv5模型针对水面漂浮物进行检测时,首先需要准备好相关的数据集数据集应包含大量的水面垃圾图像,并且每图像都需进行精确的标注,以YOLO格式VOC格式保存标注信息。接下来,要对数据集进行划分,形成训练集、验证集和测试集。 参考资源链接:[水面漂浮物检测:基于PyTorch的YOLOv5研究数据集分享](https://wenku.csdn.net/doc/5uizypu2q4) 在数据预处理方面,需要编写或使用现成的Python脚本来加载图像并应用数据增强技术,如旋转、缩放、裁剪和颜色变换等,以增加模型训练的多样性和减少过拟合风险。 模型训练阶段,首先配置YOLOv5的训练参数,包括学习率、批次大小、训练周期(epochs)等,并利用划分好的训练集和验证集进行训练。监控训练过程中的损失值和性能指标,适时调整参数以优化训练效果。 当模型训练完成后,需要在测试集上评估其性能,确保模型在未见过的数据上仍能保持良好的泛化能力。最后,将训练好的模型部署到实际应用中,例如集成到水上监测无人机或固定监控设备中,实时进行水面漂浮物检测和分类。 本推荐资源《水面漂浮物检测:基于PyTorch的YOLOv5研究数据集分享》详细介绍了上述各个阶段的实践方法和技巧,非常适合希望深入研究和应用YOLOv5模型的读者。通过本资源,你可以获得从数据集构建到模型部署的全方位知识,为水面环境的智能监控提供强大的技术支持。 参考资源链接:[水面漂浮物检测:基于PyTorch的YOLOv5研究数据集分享](https://wenku.csdn.net/doc/5uizypu2q4)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值