金山云纳斯达克敲钟上市 不负时代的机遇

5月8日,中国知名的独立云服务商金山云正式在美国纳斯达克挂牌交易,股票代码 “KC”。

金山云依托广泛的云基础架构,通过提供先进可信赖的云服务,为各行业定制了结构完善的解决方案,在中国云计算市场取得了领先地位,并构建出强大的品牌影响力。

此次登陆纳斯达克,金山云将募资净额***亿元。本次上市募集的资金将主要投向基础架构的扩展和升级;技术和产品研发,尤其是在人工智能、大数据、云技术和物联网领域,以及生态系统的扩展和国际影响力建设等方面。

金山集团董事长、金山云董事长、小米集团创始人、董事长兼CEO雷军

金山集团董事长、金山云董事长、小米集团创始人、董事长兼CEO雷军表示:“金山云是一家坚持‘技术立业’的、有使命感的公司。八年的快速成长,使金山云成为中国最具代表性的云服务商之一,并在多个垂直行业确立了领先优势,未来要努力成为在更广范围内、具备更大影响力的云计算企业。”

 

金山云首席执行官王育林

金山云首席执行官王育林表示:“金山云自成立以来,一直秉承专注专业、脚踏实地的原则,顺应时代发展并不断突破创新。期待借助纳斯达克的舞台,金山云能在全球科技的最前沿,与顶尖企业共同成长,为更多的企业提供高品质的云服务。”

All in Cloud 成就美股的“第一”选择

金山云在纳斯达克成功上市,成为当前美股中唯一一个中国纯云服务商,这是资本市场对金山云的认可,也离不开早期金山云人富有远见的战略眼光和全力投入的勇气和胆识。

2014年,雷军宣布All in Cloud战略,从此拉开金山云在云计算市场快速发展的序幕并为金山云的“上市”之路打下坚实基础。据弗若斯特沙利文调查显示,金山云是中国第三大互联网云服务提供商,按照IaaS和PaaS服务收入计算,金山云在2019年的市场份额达到5.4%。

收入方面,金山云一直表现出快速增长趋势。截至2019年12月31日,金山云近三年的收入由2017年的12.36亿元人民币,连续增长至2019年的39.56亿元人民币,年均复合增长率近80%,远超过行业预测的中国云计算平均增速。不仅如此,三年来,金山云的毛利率以及净利润等多个利润指标的亏损水平已经逐步收窄,已于2019年财务年度实现毛利润转正,并在2019年的Q3和Q4分别实现毛利盈利。在刚刚过去的2020年第一季度,尽管受到疫情影响,全球经济陷入低迷,金山云仍持续增长。截至2020年3月31日,根据估算,未经审核收入约人民币13.5亿元至14亿元,同比增加59.6%至65.5%。

“金山云能顺利登陆美股,是中国云计算企业的价值体现,也代表理性投资者对信息透明和经过验证的好公司的期待,自会萌生正向的投资意向。这是中国云计算企业迈向国际化市场的一小步,也将为更多坚持价值创造的企业迈向美国资本市场提供信心。”金山云董事长雷军表示。

从互联网市场到企业级市场 顺势而为的跨界成长

金山云成立八年来,表现出非凡的前瞻性布局能力和业务发展能力,战略布局多个快速增长的垂直行业,例如游戏和视频行业,并基于先发优势和持久的努力取得行业优势地位。以视频行业为例,金山云拥有字节跳动、爱奇艺、Bilibili等头部客户。

2018年,在保持互联网业务领先优势的前提下,金山云又率先布局企业级市场,并重点突破了政务、金融两大行业,在政府及企业服务业务领域表现出超高速增长和强劲潜力。2019年第二季度,金山云政府业务同比增长近5倍,金融行业业务激增超10倍,增速行业达到第一。

除了前瞻性的战略眼光,金山云天然具备的金山集团三十余年的企业服务基因和纯云服务商的中立性这两大特质,也成就了金山云成功布局企业级市场的独特优势。企业服务基因使金山云能在服务企业级客户时快速准确地理解客户需求,再通过深厚的技术积累,给予客户超越预期的服务能力,从而持续获得高客户粘性和收入增长。中立性特质则让金山云有效避免了和企业客户的业务“冲突”,在“多云”时代,成为对中立性有需求的客户的首选。

不负时代  战略布局拥抱云计算“蓝海”

从互联网到企业级市场,金山云的每一次决策都紧跟行业发展步伐。伴随着5G、产业互联网、AIoT、混合现实在全球催生出新的市场空间和商业机遇,云计算正扮演更重要的角色并将迎来更大的蓝海市场。金山云,再一次站在机遇和时代的门口。

“我们要充分发挥在AI、区块链、物联网等领域沉淀的技术优势以及战略合作伙伴的协同优势,除了在已有行业继续深耕,还要布局新兴行业,加快国际化的步伐,这些都是我们接下来要重点要做的事。”金山云CEO王育林说道。在国际化方面,金山云一方面在全球构建强大的数据中心,满足客户业务出海需求,另一方面也正密切关注 “一带一路”政策,寻求更多的国际化合作机会。

坚持技术立业  释放无限“计算”价值 

“专注技术、持续创新”,这是纳斯达克上市企业被投资者关注的核心价值之一,也是金山云过去八年来一直践行的准则。

过去三年,从2017-2019年,金山云研发费用分别为4亿元、4.4亿元、5.95亿元,同比增长约10.35%、35.11%,随着本次成功上市,金山云也将会持续在技术和产品的研发方面投入更多力量,提高客户价值。

产品研发方面,截止目前,金山云是业界首批实现AI商用落地的企业,构建了覆盖IaaS、PaaS、SaaS的全栈产品体系,拥有公有云、私有云、混合云等种形态的云服务产品,能为视频、游戏、政务、金融、AIoT、医疗、制造等各行业提供多达120多项解决方案。其中,金山云银河云平台通过端到端输出公有云能力,全方位提升客户IT能力而备受客户好评。

“过去八年,金山云亲身经历了从消费互联网时代向产业互联网时代的演变,深度参与了中国云计算产业从0到1的划时代跨越。我们有幸能成为时代的见证和建设者。”金山云CEO王育林表示,“未来,我们将坚持技术立业,凭借专注而深刻的行业洞察,继续做客户数字化转型的亲密伙伴和价值提供者,不负时代,感恩所遇!”

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,我可以为您提供一个简单的PSO算法的DELM模型的Python实现,用于预测纳斯达克ETF的涨幅。 首先,我们需要导入所需的库: ```python import pandas as pd import numpy as np import random from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error ``` 然后,我们需要读取纳斯达克ETF.xlsx文件并对数据进行预处理: ```python # 读取数据 data = pd.read_excel('纳斯达克ETF.xlsx') # 取出需要预测的列 y = data['涨幅'].values # 取出用于预测的特征列 X = data[['成交量', '涨幅', '开盘涨幅']].values # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 对特征进行标准化处理 X_mean = np.mean(X_train, axis=0) X_std = np.std(X_train, axis=0) X_train = (X_train - X_mean) / X_std X_test = (X_test - X_mean) / X_std ``` 接下来,我们定义DELM模型的基本结构: ```python class DELM: def __init__(self, input_size, hidden_size, output_size, lr): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.lr = lr # 初始化权重矩阵 self.W1 = np.random.randn(self.input_size, self.hidden_size) self.b1 = np.zeros((1, self.hidden_size)) self.W2 = np.random.randn(self.hidden_size, self.output_size) self.b2 = np.zeros((1, self.output_size)) def forward(self, x): # 前向传播 self.z1 = np.dot(x, self.W1) + self.b1 self.a1 = np.tanh(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 self.y_hat = self.z2 return self.y_hat def backward(self, x, y, y_hat): # 反向传播 delta3 = y_hat - y dW2 = np.dot(self.a1.T, delta3) db2 = np.sum(delta3, axis=0, keepdims=True) delta2 = np.dot(delta3, self.W2.T) * (1 - np.power(self.a1, 2)) dW1 = np.dot(x.T, delta2) db1 = np.sum(delta2, axis=0) # 更新权重矩阵 self.W2 -= self.lr * dW2 self.b2 -= self.lr * db2 self.W1 -= self.lr * dW1 self.b1 -= self.lr * db1 ``` 然后,我们定义PSO算法的粒子类: ```python class Particle: def __init__(self, input_size, hidden_size, output_size): self.position = np.random.randn(input_size * hidden_size + hidden_size * output_size + hidden_size + output_size) self.velocity = np.random.randn(input_size * hidden_size + hidden_size * output_size + hidden_size + output_size) self.best_position = self.position self.best_error = float('inf') ``` 接着,我们定义PSO算法的主要部分: ```python class PSO: def __init__(self, input_size, hidden_size, output_size, num_particles, max_iterations, c1, c2): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_particles = num_particles self.max_iterations = max_iterations self.c1 = c1 self.c2 = c2 self.particles = [Particle(input_size, hidden_size, output_size) for i in range(num_particles)] self.global_best_position = np.random.randn(input_size * hidden_size + hidden_size * output_size + hidden_size + output_size) self.global_best_error = float('inf') def train(self, X_train, y_train): for i in range(self.max_iterations): for particle in self.particles: # 将粒子的位置转换为权重矩阵 W1 = np.reshape(particle.position[:self.input_size * self.hidden_size], (self.input_size, self.hidden_size)) b1 = np.reshape(particle.position[self.input_size * self.hidden_size:self.input_size * self.hidden_size + self.hidden_size], (1, self.hidden_size)) W2 = np.reshape(particle.position[self.input_size * self.hidden_size + self.hidden_size:self.input_size * self.hidden_size + self.hidden_size + self.hidden_size * self.output_size], (self.hidden_size, self.output_size)) b2 = np.reshape(particle.position[self.input_size * self.hidden_size + self.hidden_size + self.hidden_size * self.output_size:], (1, self.output_size)) # 使用权重矩阵初始化DELM模型 model = DELM(self.input_size, self.hidden_size, self.output_size, 0) # 计算模型在训练集上的均方误差 y_hat = model.forward(X_train) error = mean_squared_error(y_train, y_hat) # 更新粒子的最佳位置和全局最佳位置 if error < particle.best_error: particle.best_position = particle.position particle.best_error = error if error < self.global_best_error: self.global_best_position = particle.position self.global_best_error = error # 计算粒子的新速度和位置 new_velocity = particle.velocity + self.c1 * random.random() * (particle.best_position - particle.position) + self.c2 * random.random() * (self.global_best_position - particle.position) new_position = particle.position + new_velocity # 更新粒子的速度和位置 particle.velocity = new_velocity particle.position = new_position ``` 最后,我们使用PSO算法训练DELM模型并在测试集上进行预测: ```python # 初始化PSO算法 pso = PSO(input_size=3, hidden_size=10, output_size=1, num_particles=30, max_iterations=100, c1=0.5, c2=0.5) # 使用PSO算法训练DELM模型 pso.train(X_train, y_train) # 将最佳位置转换为权重矩阵 W1 = np.reshape(pso.global_best_position[:3 * 10], (3, 10)) b1 = np.reshape(pso.global_best_position[3 * 10:3 * 10 + 10], (1, 10)) W2 = np.reshape(pso.global_best_position[3 * 10 + 10:3 * 10 + 10 + 10], (10, 1)) b2 = np.reshape(pso.global_best_position[3 * 10 + 10 + 10:], (1, 1)) # 使用权重矩阵初始化DELM模型 model = DELM(3, 10, 1, 0) # 在测试集上进行预测 X_test = np.array(X_test) y_test = np.array(y_test) X_test = (X_test - X_mean) / X_std y_hat = model.forward(X_test) # 计算预测结果的均方误差 mse = mean_squared_error(y_test, y_hat) print('均方误差:', mse) ``` 以上就是使用PSO算法训练DELM模型进行预测的Python实现,希望能对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN云计算

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值