视频图像分割研究与实现(二):常见图像和视频分割方法概述

本文概述了图像和视频分割的常见方法,包括基于边缘、阈值、区域、形态学分水岭、聚类、图论、偏微分、融合、时域、运动和交互式的分割方法。详细介绍了每种方法的理论基础、基本思想和具体做法。
摘要由CSDN通过智能技术生成

常见图像和视频分割方法概述


图像与视频分割是指按照一定的原则将图像或视频序列分为若干个特定的、具有独特性质的部分或子集,并提取出感兴趣的目标,便于更高层次的分析和理解,因此图像与视频分割是目标特征提取、识别与跟踪的基础。


图像分割方法主要包括:

1)、基于边缘的分割方法

2)、基于阈值的分割方法

3)、基于区域的分割方法

4)、基于形态学分水岭的分割方法

5)、基于聚类的分割方法

6)、基于图论的分割方法

7)、基于偏微分的分割方法

8)、基于融合的分割方法


视频分割方法主要包括:

9)、基于时域的视频对象分割方法

10)、基于运动的视频对象分割方法

11)、交互式视频对象分割方法


接下来,分别对上面提及的图像与视频分割方法做简单概述。


一、基于边缘的分割方法


理论基础:图像的边缘是图像的最基本特征,是图像局部特性不连续(突变)的结果,是不同区域的分界处,因此它是图像分割所依赖的重要特征。

基本思想:通过搜索不同区域之间的边界,来完成图像的分割。

具体做法:首先利用合适的边缘检测算子(通常用求导数方法来检测,一般采用一阶导数和二阶导数检测边缘)提取出待分割场景不同区域的边界,然后对边界内的像素进行连通和标注,从而构成分割区域。


常见的边缘检测算子有一阶微分算子和二阶微分算子。Prewitt、Roberts、Sobel是基于一阶导数的边缘检测算子,Laplacian和LOG是基于二阶导数的边缘检测算子,检测方法是采用小区域模板与图像做卷积运算求导数,然后选取合适的阈值提取边缘,这些边缘检测算子的区别主要在于所采用的模板和元素系数的不同。目前最常用的边缘检测算子是Kirsch算子、LOG(Laplacian-Gauss)算子和Canny算子。

基于边缘的分割方法的关键在于边缘检测算子的选取。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值