第四章 一阶逻辑基本概念
命题逻辑具有一定的局限性,甚至无法判断一些常见的简单推理,例如,考虑下面的推理: 凡偶数都能被2整除,6是偶数.所以,6能被2整除
这个推理是数学中的真命题,但在命题逻辑中却无法判断它的正确性,在命题逻辑中只能将推理中出现的3个简单命题依次符号化为p,q,r,将推理的形式结构符号化为
(p^g)→r
由于上式不是重言式,所以不能由它判断推理的正确性.间题出在“凡”字,在命题逻辑中不能很好地描述“凡偶数都能被2整除"的本意,只能把它作为一个简单命题.为了克服命题逻辑的这种局限性,需要引人量词,以期达到表达出个体与总体之间的内在联系和数量关系,这就是一阶逻辑所研究的内容一阶逻辑也称一阶谓词逻辑或谓词逻辑。
4.1阶逻辑命题符号化
个体词、谓词和量词是一阶逻辑命题符号化的3个基本要素.下面讨论这3个要素。
- 个体词
个体词是指所研究对象中可以独立存在的具体的或抽象的客。例如,小王,小李,中国√2,3等都可做为个体词将表示具体或特定的客体的个体词称作个体常项,一般用小写英文字母a,b,c,…表示,而将表示抽象或泛指的个体词称为个体变项,常用x,y,z,…表示.并称个体变项的取值范围为个体域(或称论域).个体域可以是有穷集合,例如,{1,2,3},{a,b,c,d},{a,b,c,...,x,y,z}…,也可以是无穷集合,例如,自然数集合N,实数集合R等,有一个特殊的个体域,它是由宇宙间一切事物组成的,称为全总个体域,本书在论述或推理中如不指明所采用的个体域,都是使用全总个体域
- 谓词
谓词是用来刻画个体词性质及个体词之间相互关系的词,常用F,G,H,...表示.考虑下面4个命题(或命题公式)
- √2是无理数
- x是有理数
- 小王与小李同岁
- x与y具有关系L
在(1)中,√2是个体常项,“…是无理数”是谓词,记为F.整个命题可表成F(√2).在(2)中,X是个体变项,“…是有理数”是谓词,记为G.这个命题可表成G(x).在(3)中,小王,小李都是个体常项,“…与…同岁”是谓词,记为H,这个命题可符号化为H(a,b),其中a表示小王,b表示小李.在(4)中,x,y为两个个体变项,L是谓词,这个命题的符号化形式为L(x,y)
同个体词一样,谓词也有常项与变项之分.表示具体性质或关系的谓词称为谓词常项,表示抽象的或泛指的性质或关系的谓词称为谓词变项.无论是谓词常项或变项都用大写英文字母F,G,H,…表示,要根据上下文区分.在上面4个命题中,(1),(2),(3)中谓词F,G,H是常项,而(4)中谓词L是变项。
一般地,含n(n>=1)个命题变项x1,x2,...,xn的谓词P称作n元谓词,记作P(x1,x2,…,xn)当n=1时,P(x1)表示x1具有性质P;当n≥2时,P(x1,x)表示P(x1,x2,…,xn)表示x1,x2,...,xn具有关系P。n元谓词是以个体域为定义域,以{0,1}为值域的n元函数或关系。
有时将不带个体变项的谓词称为0元谓词,例如,F(a),G(a,b),P(a1,a2,…,an)等都是0元谓词.当F,G,P为谓词常项时,0元谓词为命题,反之,任何命题均可以表示成0元谓词,因而可将命题看成特殊的谓词。
例4.1将下列命题在一阶逻辑中用0元谓词符号化,并讨论它们的真值:
- 只有2是素数,4才是素数
- 如果5大于4,则4大于6
解 (1)设一元谓词F(x):x是素数,命题可符号化为
F(4)→F(2)
由于此蕴涵式的前件为假,所以命题为真
(2)设2元谓词G(x,y):x>y,命题可符号化为
G(5,4)->G(4,6)
由于G(5,4)为真,而G(4,6)为假,所以命题为假.
- 量词
表示个体常项或变项之间数量关系的词称为量词.有两种量词
- 全称量词 日常生活和数学中常用的“一切的”,“所有的”,“每一个”,“任意的“凡”,“都”等词统称为全称量词,用符号“∀"表示,∀x表示个体域里的所有个体x,其中个体域是事先约定的.例如∀xF(x)表示个体域里所有个体x都有性质F, ∀X∀YG(x,y)表示个体域里的所有个体x和y有关系G,其中F和G是谓词
- 存在量词 日常生活和数学中常用的“存在”,“有一个”,“有的”,“至少有一个”等词统称为存在量词,用符号“ヨ”表示.ヨx表示个体域里有一个个体x,例如,用ヨxF(x)表示在个体域里存在个体x具有性质F,ヨxヨy (x,y)表示在个体域里的存在个体x和y有关系G. 全称量词和存在量词可以联合使用,如∀xヨyG(x,y)表示对个体域里所有个体x,存在y使得x和y有关系G;而ヨx∀yG(x,y)表示个体域里存在个体x使得和所有的个体y有关系G
例4.2在个体域分别限制为(a)和(b)条件时,将下面两个命题符号化
- 凡人都呼吸
- 有的人用左手写字
其中:(a)个体域D1为人类集合
(b)个体域D2为全总个体域
解 (a)令F(x):x呼吸,G(x):x用左手写字.在D1中除人外,再无别的东西,因而
- 符号化为
∀ XF(x) (4.1)
- 符号化为
ヨXG(x) (4.2)
(b) D2中除有人外,还有万物,因而在符号化时必须考虑将人先分离出来.为此引人谓词M(x):x是人.在D2中,把(1),(2)分别说得更清楚些:
(1)对于宇宙间一切个体而言,如果个体是人,则他呼吸
(2)在宇宙间存在用左手写字的人(或者更清楚地,在宇宙间存在这样的个体,它是人且用左手写字.
于是,(1),(2)的符号化形式应分别为
∀x(M(x)→F(x)) (4.3)
和
ヨx(M(x)^C(x)) (4.4)
其中F(x)与G(x)的含义同(a)中
由例4.2可知,命题(1),(2)在不同的个体域中符号化的形式可能不一样.当使用全总个体域D2时,为了将人与其他事物中区别出来,引进了谓词M(x).这样的谓词称为特性谓词.在命题符号化时一定要注意正确使用特性谓词.
这里要提醒初学者注意一个常见的错误:不能正确的使用→与^,例如,有些初学者,在D中将(1)符号化为下面形式
∀x(M(x)^ F(x)) (4.5)
这是不对的若将它翻译成自然语言,应该是“宇宙间的所有个体都是人并且都呼吸”,这显然不是(1)的原意.另一方面,还有人将(2)符号化为
ヨx(M(x)→G(x)) (4.6)
这也是不对的.将它翻译成自然语应该为“在宇宙间存在个体,如果这个体是人,则他用左手写字”,这显然也不是(2)的原意.
当F是谓词常项时,∀xF(x)是一个命题,如果把个体域中的任何一个个体a代入,F(a)都为真,则∀xF(x)为真;否则∀xF(x)为假.ヨxF(x)也是一个命题,如果个体域中存在一个个体使得F(a)为真,则ヨxF(x)为真;否则ヨxF(x)为假
例4.3在个体域限制为(a)和(b)条件时,将下列命题符号化,并给出它们的真值:
- 对于任意的x,均有x2-3x+2=(x-1)(x-2)
- 存在x,使得x+5=3
其中:(a)个体城D1=N
(b)个体域D2=R
解:(a)令F(x):x2-3x+2=(x-1)(x-2),G(x):x+5=3.命题(1)的符号化形式为
∀XF(x) (4.7)
命题(2)的符号化形式为
ヨxG(x) (4.8)
显然(1)为真命题,而(2)为假命题
(b)在D2内,(1)与(2)的符号化形式还是(4.7)式和(4.8)式,(1)仍然是真命题,而此时(2)也为真命题
从例4.2和例4.3可以看出以下两点
- 在不同个体域内,同一个命题的符号化形式可能不同,也可能相同
- 同一个命题,在不同个体域中的真值也可能不同
另外,作为一种约定,今后若没有特别指明个体域,都是采用全总个体域
例4.4将下列命题符号化,并讨论真值:
- 所有的人都长着黑头发
- 有的人登上过月球
- 没有人登上过木星
- 在美国留学的学生未必都是亚洲人
解 由于本题没指明个体域,因而应采用全总个体域,令M(x):x为人
- 令F(x):x长着黑头发,命题(1)符号化形式为
∀x(M(x)→F(x)) (4.9)
设a为某金发姑娘,则M(a)为真,而F(a)为假,所以M(a)→F(a)为假,故(4.9)为假
- 令G(x):x登上过月球,命题(2)符号化形式为
ヨx(M(x)^G(x) (4.10)
设a是1969年登上月球完成阿波罗计划的美国宇航员阿姆斯特朗,M(a)^G(a)为真,所以(4.10)为真
- 令H(x):x登上过木星,命题(3)符号化形式为
┓ヨx(M(x)^H(x)) (4.11)
到目前为止,还没有人登上过木星,所以对任何个体a,要么M(a)为假(a不是人),要么H(a)为假(a没有登上过本星),故M(a)^H(a)均为假,因而ヨx(M(x)^H(x))为假,(4.11)为真.
- 令F(x):x是在美国留学的学生,G(x):x是亚洲人.命题(4)符号化形式为
┓∀x(F(x)->G(x) (4.12)
此命题为真.
下面的问题要使用n(n≥2)元谓词
例4.5将下列命题符号化
- 兔子比乌龟跑得快
- 有的兔子比所有的乌龟跑得快
- 并不是所有的兔子都比乌龟跑得快
- 不存在跑得同样快的两只兔子
解 因为本题没有指明个体域,因而采用全总个体域.”...经...跑得快”是2元谓词,需引人两个个体变项x与y令F(x):x是兔子,G(y):y是乌龟,H(x,y):x比y跑得快,L(x,y):x与y跑得同样快.这4个命题分别符号化为
∀x∀y( F(x)^G(y)->H(x, Y)) (4.13)
ヨx(F(x)^∀y(G(y)->H(x,y)) (4.14)
┓∀x∀y( F(x)^G(y)->H(x, Y)) (4.15)
┓ヨxヨy(F(x)^F(y)^L(x,y)) (4.16)
对于含n元谓词的命题,在符号化时应该注意以下几点:
- 分析命题中表和关系的谓词,分别符号化为一元和n(n≥2)元谓词
- 根据命题的实际意义选用全称量词或存在量词
- 一般说来,多个量词出现时,它们的顺序不能随意调换.例如,考虑个体域为实数集H(x,y)表示x+y=10,则命题“对于任意的x,都存在y,使得x+y=10”的符号化形式为
∀xヨyF(x,y) (4.17)
所给命题显然为真命题,但如果改变两个量词的顺序,得
ヨy∀xH(x,y) (4.18)
它的意思是“存在y使得,对所有的x都有x+y=10”,这是一个假命题,(4.18)与(4.17)表达的是两个不同的意思
- 命题的符号化形式不惟一.例如,在例4.5中,(3)还可以符号化为
ヨxヨy(F(x)^G(y)^┓H(x,y) (4.19)
(4)还可以符号化为
∀x∀y( F(x)^G(y)->┓L(x, y)) (4.20)
下一章可以证明(4.15)式和(4.19)式,(4.16)式与(4.20)式是等值的
由于引进了个体词、谓词和量词的概念,现在可以将本章开始时讨论的推理“凡偶数都能被2整除.6是偶数.所以,6能被2整除."在一阶逻辑中可符号化为如下形式
(∀x(F(x)→G(x)))^F(6)→G(6) (4.21)
其中,F(x):x是偶数,G(x):x能被2整除,下一章可证明(4.21)式是永真式,即恒真.