第四章 一阶逻辑基本概念

第四章 一阶逻辑基本概念

 

命题逻辑具有一定的局限性,甚至无法判断一些常见的简单推理,例如,考虑下面的推理: 凡偶数都能被2整除,6是偶数.所以,6能被2整除

这个推理是数学中的真命题,但在命题逻辑中却无法判断它的正确性,在命题逻辑中只能将推理中出现的3个简单命题依次符号化为p,q,r,将推理的形式结构符号化为

(p^g)→r

由于上式不是重言式,所以不能由它判断推理的正确性.间题出在“凡”字,在命题逻辑中不能很好地描述“凡偶数都能被2整除"的本意,只能把它作为一个简单命题.为了克服命题逻辑的这种局限性,需要引人量词,以期达到表达出个体与总体之间的内在联系和数量关系,这就是一阶逻辑所研究的内容一阶逻辑也称一阶谓词逻或谓词逻辑

 

4.1阶逻辑命题符号化

 

个体词、谓词和量词是一阶逻辑命题符号化的3个基本要素.下面讨论这3个要素。

  1. 个体词

个体词是指所研究对象中可以独立存在的具体的或抽象的客。例如,小王,小李,中国√2,3等都可做为个体词将表示具体或特定的客体的个体词称作个体常项,一般用小写英文字母a,b,c,…表示,而将表示抽象或泛指的个体词称为个体变项,常用x,y,z,…表示.并称个体变项的取值范围为个体(或称).个体域可以是有穷集合,例如,{1,2,3},{a,b,c,d},{a,b,c,...,x,y,z}…,也可以是无穷集合,例如,自然数集合N,实数集合R等,有一个特殊的个体域,它是由宇宙间一切事物组成的,称为全总个体,本书在论述或推理中如不指明所采用的个体域,都是使用全总个体域

  1. 谓词

谓词是用来刻画个体词性质及个体词之间相互关系的词,常用F,G,H,...表示.考虑下面4个命题(或命题公式)

  1. √2是无理数
  2. x是有理数
  3. 小王与小李同岁
  4. x与y具有关系L

在(1)中,√2是个体常项,“…是无理数”是谓词,记为F.整个命题可表成F(√2).在(2)中,X是个体变项,“…是有理数”是谓词,记为G.这个命题可表成G(x).在(3)中,小王,小李都是个体常项,“…与…同岁”是谓词,记为H,这个命题可符号化为H(a,b),其中a表示小王,b表示小李.在(4)中,x,y为两个个体变项,L是谓词,这个命题的符号化形式为L(x,y)

同个体词一样,谓词也有常项与变项之分.表示具体性质或关系的谓词称为谓词常项,表示抽象的或泛指的性质或关系的谓词称为谓词变项.无论是谓词常项或变项都用大写英文字母F,G,H,…表示,要根据上下文区分.在上面4个命题中,(1),(2),(3)中谓词F,G,H是常项,而(4)中谓词L是变项。

一般地,含n(n>=1)个命题变项x1,x2,...,xn的谓词P称作n元谓词,记作P(x1,x2,…,xn)当n=1时,P(x1)表示x1具有性质P;当n≥2时,P(x1,x)表示P(x1,x2,…,xn)表示x1,x2,...,xn具有关系P。n元谓词是以个体域为定义域,以{0,1}为值域的n元函数或关系。

有时将不带个体变项的谓词称为0元谓词,例如,F(a),G(a,b),P(a1,a2,…,an)等都是0元谓词.当F,G,P为谓词常项时,0元谓词为命题,反之,任何命题均可以表示成0元谓词,因而可将命题看成特殊的谓词。

例4.1将下列命题在一阶逻辑中用0元谓词符号化,并讨论它们的真值:

  1. 只有2是素数,4才是素数
  2. 如果5大于4,则4大于6

  (1)设一元谓词F(x):x是素数,命题可符号化为

F(4)→F(2)

由于此蕴涵式的前件为假,所以命题为真

(2)设2元谓词G(x,y):x>y,命题可符号化为

G(5,4)->G(4,6)

由于G(5,4)为真,而G(4,6)为假,所以命题为假.

  1. 量词 

表示个体常项或变项之间数量关系的词称为量词.有两种量词

  1. 全称量词 日常生活和数学中常用的“一切的”,“所有的”,“每一个”,“任意的“凡”,“都”等词统称为全称量词,用符号“∀"表示,∀x表示个体域里的所有个体x,其中个体域是事先约定的.例如∀xF(x)表示个体域里所有个体x都有性质F, ∀X∀YG(x,y)表示个体域里的所有个体x和y有关系G,其中F和G是谓词
  2. 存在量词 日常生活和数学中常用的“存在”,“有一个”,“有的”,“至少有一个”等词统称为存在量词,用符号“ヨ”表示.ヨx表示个体域里有一个个体x,例如,用ヨxF(x)表示在个体域里存在个体x具有性质F,ヨxヨy (x,y)表示在个体域里的存在个体x和y有关系G. 全称量词和存在量词可以联合使用,如∀xヨyG(x,y)表示对个体域里所有个体x,存在y使得x和y有关系G;而ヨx∀yG(x,y)表示个体域里存在个体x使得和所有的个体y有关系G

例4.2在个体域分别限制为(a)和(b)条件时,将下面两个命题符号化

  1. 凡人都呼吸
  2. 有的人用左手写字

其中:(a)个体域D1为人类集合

(b)个体域D2为全总个体域

解 (a)令F(x):x呼吸,G(x):x用左手写字.在D1中除人外,再无别的东西,因而

  1. 符号化为

∀ XF(x) (4.1)

  1. 符号化为

ヨXG(x) (4.2)

(b) D2中除有人外,还有万物,因而在符号化时必须考虑将人先分离出来.为此引人谓词M(x):x是人.在D2中,把(1),(2)分别说得更清楚些:

(1)对于宇宙间一切个体而言,如果个体是人,则他呼吸

(2)在宇宙间存在用左手写字的人(或者更清楚地,在宇宙间存在这样的个体,它是人且用左手写字.

于是,(1),(2)的符号化形式应分别为

∀x(M(x)→F(x)) (4.3)

ヨx(M(x)^C(x)) (4.4)

其中F(x)与G(x)的含义同(a)中

由例4.2可知,命题(1),(2)在不同的个体域中符号化的形式可能不一样.当使用全总个体域D2时,为了将人与其他事物中区别出来,引进了谓词M(x).这样的谓词称为特性谓词.在命题符号化时一定要注意正确使用特性谓词.

这里要提醒初学者注意一个常见的错误:不能正确的使用→与^,例如,有些初学者,在D中将(1)符号化为下面形式

∀x(M(x)^ F(x)) (4.5)

这是不对的若将它翻译成自然语言,应该是“宇宙间的所有个体都是人并且都呼吸”,这显然不是(1)的原意.另一方面,还有人将(2)符号化为

ヨx(M(x)→G(x)) (4.6)

这也是不对的.将它翻译成自然语应该为“在宇宙间存在个体,如果这个体是人,则他用左手写字”,这显然也不是(2)的原意.

当F是谓词常项时,∀xF(x)是一个命题,如果把个体域中的任何一个个体a代入,F(a)都为真,则∀xF(x)为真;否则∀xF(x)为假.ヨxF(x)也是一个命题,如果个体域中存在一个个体使得F(a)为真,则ヨxF(x)为真;否则ヨxF(x)为假

例4.3在个体域限制为(a)和(b)条件时,将下列命题符号化,并给出它们的真值:

  1. 对于任意的x,均有x2-3x+2=(x-1)(x-2)
  2. 存在x,使得x+5=3

其中:(a)个体城D1=N

(b)个体域D2=R

解:(a)令F(x):x2-3x+2=(x-1)(x-2),G(x):x+5=3.命题(1)的符号化形式为

∀XF(x) (4.7)

命题(2)的符号化形式为

ヨxG(x) (4.8)

显然(1)为真命题,而(2)为假命题

(b)在D2内,(1)与(2)的符号化形式还是(4.7)式和(4.8)式,(1)仍然是真命题,而此时(2)也为真命题

从例4.2和例4.3可以看出以下两点

  1. 在不同个体域内,同一个命题的符号化形式可能不同,也可能相同
  2. 同一个命题,在不同个体域中的真值也可能不同

另外,作为一种约定,今后若没有特别指明个体域,都是采用全总个体域

例4.4将下列命题符号化,并讨论真值:

  1. 所有的人都长着黑头发
  2. 有的人登上过月球
  3. 没有人登上过木星
  4. 在美国留学的学生未必都是亚洲人

 由于本题没指明个体域,因而应采用全总个体域,令M(x):x为人

  1. 令F(x):x长着黑头发,命题(1)符号化形式为

∀x(M(x)→F(x)) (4.9)

设a为某金发姑娘,则M(a)为真,而F(a)为假,所以M(a)→F(a)为假,故(4.9)为假

  1. 令G(x):x登上过月球,命题(2)符号化形式为

ヨx(M(x)^G(x) (4.10)

设a是1969年登上月球完成阿波罗计划的美国宇航员阿姆斯特朗,M(a)^G(a)为真,所以(4.10)为真

  1. 令H(x):x登上过木星,命题(3)符号化形式为

┓ヨx(M(x)^H(x)) (4.11)

到目前为止,还没有人登上过木星,所以对任何个体a,要么M(a)为假(a不是人),要么H(a)为假(a没有登上过本星),故M(a)^H(a)均为假,因而ヨx(M(x)^H(x))为假,(4.11)为真.

  1. 令F(x):x是在美国留学的学生,G(x):x是亚洲人.命题(4)符号化形式为

┓∀x(F(x)->G(x) (4.12)

此命题为真.

下面的问题要使用n(n≥2)元谓词

4.5将下列命题符号化

  1. 兔子比乌龟跑得快
  2. 有的兔子比所有的乌龟跑得快
  3. 并不是所有的兔子都比乌龟跑得快
  4. 不存在跑得同样快的两只兔子

 因为本题没有指明个体域,因而采用全总个体域.”...经...跑得快”是2元谓词,需引人两个个体变项x与y令F(x):x是兔子,G(y):y是乌龟,H(x,y):x比y跑得快,L(x,y):x与y跑得同样快.这4个命题分别符号化为

∀x∀y( F(x)^G(y)->H(x, Y)) (4.13)

ヨx(F(x)^∀y(G(y)->H(x,y)) (4.14)

┓∀x∀y( F(x)^G(y)->H(x, Y)) (4.15)

┓ヨxヨy(F(x)^F(y)^L(x,y)) (4.16)

对于含n元谓词的命题,在符号化时应该注意以下几点:

  1. 分析命题中表和关系的谓词,分别符号化为一元和n(n≥2)元谓词
  2. 根据命题的实际意义选用全称量词或存在量词
  3. 一般说来,多个量词出现时,它们的顺序不能随意调换.例如,考虑个体域为实数集H(x,y)表示x+y=10,则命题“对于任意的x,都存在y,使得x+y=10”的符号化形式为

∀xヨyF(x,y) (4.17)

所给命题显然为真命题,但如果改变两个量词的顺序,得

ヨy∀xH(x,y) (4.18)

它的意思是“存在y使得,对所有的x都有x+y=10”,这是一个假命题,(4.18)与(4.17)表达的是两个不同的意思

  1. 命题的符号化形式不惟一.例如,在例4.5中,(3)还可以符号化为

ヨxヨy(F(x)^G(y)^┓H(x,y) (4.19)

(4)还可以符号化为

∀x∀y( F(x)^G(y)->┓L(x, y)) (4.20)

下一章可以证明(4.15)式和(4.19)式,(4.16)式与(4.20)式是等值的

由于引进了个体词、谓词和量词的概念,现在可以将本章开始时讨论的推理“凡偶数都能被2整除.6是偶数.所以,6能被2整除."在一阶逻辑中可符号化为如下形式

(∀x(F(x)→G(x)))^F(6)→G(6) (4.21)

其中,F(x):x是偶数,G(x):x能被2整除,下一章可证明(4.21)式是永真式,即恒真.

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值