链接
题解
先写出每个物品的生成函数:
∑ k = 0 ∞ ( a k 2 + b k + 1 ) x k = a ∑ k = 0 ∞ k 2 x k + b ∑ k = 0 ∞ k x k + ∑ k = 0 ∞ x k \sum_{k=0}^\infin (ak^2+bk+1)x^k \\ = a\sum_{k=0}^\infin k^2x^k + b\sum_{k=0}^\infin k x^k + \sum_{k=0}^\infin x^k k=0∑∞(ak2+bk+1)xk=ak=0∑∞k2xk+bk=0∑∞kxk+k=0∑∞xk
∑ k = 0 ∞ x k \sum_{k=0}^\infin x^k ∑k=0∞xk显然是可以写成 1 1 − x \frac{1}{1-x} 1−x1的(这个地方个人理解是:因为 ( 1 − x ) ( 1 + x + x 2 + … ) (1-x)(1+x+x^2+\dots) (1−x)(1+x+x2+…)=1,所以在<多项式,多项式卷积>这个代数系统下二者互逆,因此才记作 1 1 − x = 1 + x + x 2 + … \frac{1}{1-x} = 1+x+x^2+\dots 1−x1=1+x+x2+…)
然后我们进行一些求导乱搞:
∑ k = 0 ∞ x k = 1 1 − x d d x ( ∑ k = 0 ∞ x k ) = ∑ k = 0 ∞ k x k − 1 = 1 ( 1 − x ) 2 ∑ k = 0 ∞ k x k = x ( 1 − x ) 2 \sum_{k=0}^\infin x^k = \frac{1}{1-x} \\ \frac{d}{dx} (\sum_{k=0}^\infin x^k) = \sum_{k=0}^\infin k x^{k-1} = \frac{1}{(1-x)^2} \\ \sum_{k=0}^\infin k x^{k} = \frac{x}{(1-x)^2} k=0∑∞xk=1−x1dxd(k=0∑∞xk)=k=0∑∞kxk−1=(1−x)21k=0∑∞kxk=(1−x)2x
同理找到
∑
k
=
0
∞
k
2
x
k
=
x
(
1
+
x
)
(
1
−
x
)
3
\sum_{k=0}^\infin k^2 x^k = \frac{x(1+x)}{(1-x)^3}
k=0∑∞k2xk=(1−x)3x(1+x)
最开始的生成函数经过同分化简之后可以得到:
( a − b + 1 ) x 2 + ( a + b − 2 ) x + 1 ( 1 − x ) 3 \frac{(a-b+1)x^2+(a+b-2)x+1}{(1-x)^3} (1−x)3(a−b+1)x2+(a+b−2)x+1
然后这些多项式乘起来之后,得到
∏ ( ( a i − b i + 1 ) x 2 + ( a i + b i − 2 ) x + 1 ) ( 1 − x ) 3 m \frac{\prod \left( (a_i-b_i+1)x^2+(a_i+b_i-2)x+1 \right)}{(1-x)^{3m}} (1−x)3m∏((ai−bi+1)x2+(ai+bi−2)x+1)
利用广义二项式定理:
( 1 + x ) α = ∑ k = 0 ∞ ( α k ) x k (1+x)^\alpha = \sum_{k=0}^\infin \binom{\alpha}{k} x^k (1+x)α=k=0∑∞(kα)xk
就可以发现我们最后就是求一个多项式卷积, n t t ntt ntt即可
代码
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 100010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
struct EasyMath
{
ll prime[maxn], phi[maxn], mu[maxn];
bool mark[maxn];
ll fastpow(ll a, ll b, ll c)
{
ll t(a%c), ans(1ll);
for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(!b){x=1,y=0;return;}
ll xx, yy;
exgcd(b,a%b,xx,yy);
x=yy, y=xx-a/b*yy;
}
ll inv(ll x, ll p) //p是素数
{return fastpow(x%p,p-2,p);}
ll inv2(ll a, ll p)
{
ll x, y;
exgcd(a,p,x,y);
return (x+p)%p;
}
void shai(ll N)
{
ll i, j;
for(i=2;i<=N;i++)mark[i]=false;
*prime=0;
phi[1]=mu[1]=1;
for(i=2;i<=N;i++)
{
if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
for(j=1;j<=*prime and i*prime[j]<=N;j++)
{
mark[i*prime[j]]=true;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
{
ll M=1, ans=0, n=a.size(), i;
for(i=0;i<n;i++)M*=m[i];
for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
return ans;
}
}em;
#define mod 998244353ll
struct NTT
{
ll n, R[maxn], a[maxn], b[maxn];
void init(ll bound) //bound是积多项式的最高次幂
{
ll L(0);
for(n=1;n<=bound;n<<=1,L++);
for(ll i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)), a[i]=b[i]=0;
}
void ntt(ll* a, int opt)
{
ll i, j, k, wn, w, x, y, inv(em.fastpow(n,mod-2,mod));
for(i=0;i<n;i++)if(i>R[i])swap(a[i],a[R[i]]);
for(i=1;i<n;i<<=1)
{
if(opt==1)wn=em.fastpow(3,(mod-1)/(i<<1),mod);
else wn=em.fastpow(3,(mod-1-(mod-1)/(i<<1)),mod);
for(j=0;j<n;j+=i<<1)
for(w=1,k=0;k<i;k++,w=w*wn%mod)
{
x=a[k+j], y=a[k+j+i]*w%mod;
a[k+j]=(x+y)%mod, a[k+j+i]=(x-y)%mod;
}
}
if(opt==-1)for(i=0;i<n;i++)(a[i]*=inv)%=mod;
}
void mult()
{
ntt(a,1), ntt(b,1);
for(int i=0;i<n;i++)(a[i]*=b[i])%=mod;
ntt(a,-1);
}
}ntt;
#define sqr(x) ((x)*(x))
ll fact[maxn], _fact[maxn], inv[maxn], m, a[maxn], b[maxn];
ll C(ll n, ll m)
{
if(n<0 or m<0 or m>n)return 0;
return fact[n]*_fact[m]%mod*_fact[n-m]%mod;
}
int main()
{
ll i, j, T;
inv[1]=1;
rep(i,2,maxn-1)inv[i]=inv[mod%i]*(mod-mod/i)%mod;
fact[0]=_fact[0]=1;
rep(i,1,maxn-1)fact[i]=fact[i-1]*i%mod, _fact[i]=_fact[i-1]*inv[i]%mod;
m=read();
rep(i,1,m)a[i]=read(), b[i]=read();
ntt.init(10000);
ntt.a[0]=1;
auto &A=ntt.a;
rep(i,1,m)
{
for(j=10000;j>=2;j--)
A[j]=(A[j-2]*(a[i]-b[i]+1)+A[j-1]*(a[i]+b[i]-2)+A[j])%mod;
A[1]=(A[0]*(a[i]+b[i]-2)+A[1])%mod;
}
auto &B=ntt.b;
rep(i,0,10000)B[i]=C(3*m+i-1,i);
ntt.mult();
T=read();
while(T--)printf("%lld\n",(A[read()]+mod)%mod);
return 0;
}