nowcoder19153 无限手套

博客介绍了如何利用生成函数和多项式卷积的方法解决NowCoder上的19153题——无限手套。通过求导和同构简化生成函数,最终得出解题公式,并应用广义二项式定理和NTT(快速傅里叶变换)进行多项式卷积求解。
摘要由CSDN通过智能技术生成

链接

点击跳转

题解

先写出每个物品的生成函数:

∑ k = 0 ∞ ( a k 2 + b k + 1 ) x k = a ∑ k = 0 ∞ k 2 x k + b ∑ k = 0 ∞ k x k + ∑ k = 0 ∞ x k \sum_{k=0}^\infin (ak^2+bk+1)x^k \\ = a\sum_{k=0}^\infin k^2x^k + b\sum_{k=0}^\infin k x^k + \sum_{k=0}^\infin x^k k=0(ak2+bk+1)xk=ak=0k2xk+bk=0kxk+k=0xk

∑ k = 0 ∞ x k \sum_{k=0}^\infin x^k k=0xk显然是可以写成 1 1 − x \frac{1}{1-x} 1x1的(这个地方个人理解是:因为 ( 1 − x ) ( 1 + x + x 2 + …   ) (1-x)(1+x+x^2+\dots) (1x)(1+x+x2+)=1,所以在<多项式,多项式卷积>这个代数系统下二者互逆,因此才记作 1 1 − x = 1 + x + x 2 + … \frac{1}{1-x} = 1+x+x^2+\dots 1x1=1+x+x2+)

然后我们进行一些求导乱搞:

∑ k = 0 ∞ x k = 1 1 − x d d x ( ∑ k = 0 ∞ x k ) = ∑ k = 0 ∞ k x k − 1 = 1 ( 1 − x ) 2 ∑ k = 0 ∞ k x k = x ( 1 − x ) 2 \sum_{k=0}^\infin x^k = \frac{1}{1-x} \\ \frac{d}{dx} (\sum_{k=0}^\infin x^k) = \sum_{k=0}^\infin k x^{k-1} = \frac{1}{(1-x)^2} \\ \sum_{k=0}^\infin k x^{k} = \frac{x}{(1-x)^2} k=0xk=1x1dxd(k=0xk)=k=0kxk1=(1x)21k=0kxk=(1x)2x

同理找到
∑ k = 0 ∞ k 2 x k = x ( 1 + x ) ( 1 − x ) 3 \sum_{k=0}^\infin k^2 x^k = \frac{x(1+x)}{(1-x)^3} k=0k2xk=(1x)3x(1+x)

最开始的生成函数经过同分化简之后可以得到:

( a − b + 1 ) x 2 + ( a + b − 2 ) x + 1 ( 1 − x ) 3 \frac{(a-b+1)x^2+(a+b-2)x+1}{(1-x)^3} (1x)3(ab+1)x2+(a+b2)x+1

然后这些多项式乘起来之后,得到

∏ ( ( a i − b i + 1 ) x 2 + ( a i + b i − 2 ) x + 1 ) ( 1 − x ) 3 m \frac{\prod \left( (a_i-b_i+1)x^2+(a_i+b_i-2)x+1 \right)}{(1-x)^{3m}} (1x)3m((aibi+1)x2+(ai+bi2)x+1)

利用广义二项式定理:

( 1 + x ) α = ∑ k = 0 ∞ ( α k ) x k (1+x)^\alpha = \sum_{k=0}^\infin \binom{\alpha}{k} x^k (1+x)α=k=0(kα)xk

就可以发现我们最后就是求一个多项式卷积, n t t ntt ntt即可

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 100010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
#define mod 998244353ll
struct NTT
{
    ll n, R[maxn], a[maxn], b[maxn];
    void init(ll bound)    //bound是积多项式的最高次幂
    {
        ll L(0);
        for(n=1;n<=bound;n<<=1,L++);
        for(ll i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)), a[i]=b[i]=0;
    }
    void ntt(ll* a, int opt)
    {
        ll i, j, k, wn, w, x, y, inv(em.fastpow(n,mod-2,mod));
        for(i=0;i<n;i++)if(i>R[i])swap(a[i],a[R[i]]);
        for(i=1;i<n;i<<=1)
        {
            if(opt==1)wn=em.fastpow(3,(mod-1)/(i<<1),mod);
            else wn=em.fastpow(3,(mod-1-(mod-1)/(i<<1)),mod);
            for(j=0;j<n;j+=i<<1)
                for(w=1,k=0;k<i;k++,w=w*wn%mod)
                {
                    x=a[k+j], y=a[k+j+i]*w%mod;
                    a[k+j]=(x+y)%mod, a[k+j+i]=(x-y)%mod;
                }
        }
        if(opt==-1)for(i=0;i<n;i++)(a[i]*=inv)%=mod;
    }
    void mult()
    {
        ntt(a,1), ntt(b,1);
        for(int i=0;i<n;i++)(a[i]*=b[i])%=mod;
        ntt(a,-1);
    }
}ntt;
#define sqr(x) ((x)*(x))
ll fact[maxn], _fact[maxn], inv[maxn], m, a[maxn], b[maxn];
ll C(ll n, ll m)
{
    if(n<0 or m<0 or m>n)return 0;
    return fact[n]*_fact[m]%mod*_fact[n-m]%mod;
}
int main()
{
    ll i, j, T;
    inv[1]=1;
    rep(i,2,maxn-1)inv[i]=inv[mod%i]*(mod-mod/i)%mod;
    fact[0]=_fact[0]=1;
    rep(i,1,maxn-1)fact[i]=fact[i-1]*i%mod, _fact[i]=_fact[i-1]*inv[i]%mod;
    m=read();
    rep(i,1,m)a[i]=read(), b[i]=read();
    ntt.init(10000);
    ntt.a[0]=1;
    auto &A=ntt.a;
    rep(i,1,m)
    {
        for(j=10000;j>=2;j--)
            A[j]=(A[j-2]*(a[i]-b[i]+1)+A[j-1]*(a[i]+b[i]-2)+A[j])%mod;
        A[1]=(A[0]*(a[i]+b[i]-2)+A[1])%mod;
    }
    auto &B=ntt.b;
    rep(i,0,10000)B[i]=C(3*m+i-1,i);
    ntt.mult();
    T=read();
    while(T--)printf("%lld\n",(A[read()]+mod)%mod);
    return 0;
}
内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值