链接
题解
先写出每个物品的生成函数:
∑ k = 0 ∞ ( a k 2 + b k + 1 ) x k = a ∑ k = 0 ∞ k 2 x k + b ∑ k = 0 ∞ k x k + ∑ k = 0 ∞ x k \sum_{k=0}^\infin (ak^2+bk+1)x^k \\ = a\sum_{k=0}^\infin k^2x^k + b\sum_{k=0}^\infin k x^k + \sum_{k=0}^\infin x^k k=0∑∞(ak2+bk+1)xk=ak=0∑∞k2xk+bk=0∑∞kxk+k=0∑∞xk
∑ k = 0 ∞ x k \sum_{k=0}^\infin x^k ∑k=0∞xk显然是可以写成 1 1 − x \frac{1}{1-x} 1−x1的(这个地方个人理解是:因为 ( 1 − x ) ( 1 + x + x 2 + … ) (1-x)(1+x+x^2+\dots) (1−x)(1+x+x2+…)=1,所以在<多项式,多项式卷积>这个代数系统下二者互逆,因此才记作 1 1 − x = 1 + x + x 2 + … \frac{1}{1-x} = 1+x+x^2+\dots 1−x1=1+x+x2+…)
然后我们进行一些求导乱搞: