nowcoder19153 无限手套

博客介绍了如何利用生成函数和多项式卷积的方法解决NowCoder上的19153题——无限手套。通过求导和同构简化生成函数,最终得出解题公式,并应用广义二项式定理和NTT(快速傅里叶变换)进行多项式卷积求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接

点击跳转

题解

先写出每个物品的生成函数:

∑ k = 0 ∞ ( a k 2 + b k + 1 ) x k = a ∑ k = 0 ∞ k 2 x k + b ∑ k = 0 ∞ k x k + ∑ k = 0 ∞ x k \sum_{k=0}^\infin (ak^2+bk+1)x^k \\ = a\sum_{k=0}^\infin k^2x^k + b\sum_{k=0}^\infin k x^k + \sum_{k=0}^\infin x^k k=0(ak2+bk+1)xk=ak=0k2xk+bk=0kxk+k=0xk

∑ k = 0 ∞ x k \sum_{k=0}^\infin x^k k=0xk显然是可以写成 1 1 − x \frac{1}{1-x} 1x1的(这个地方个人理解是:因为 ( 1 − x ) ( 1 + x + x 2 + …   ) (1-x)(1+x+x^2+\dots) (1x)(1+x+x2+)=1,所以在<多项式,多项式卷积>这个代数系统下二者互逆,因此才记作 1 1 − x = 1 + x + x 2 + … \frac{1}{1-x} = 1+x+x^2+\dots 1x1=1+x+x2+)

然后我们进行一些求导乱搞:

∑ k = 0 ∞ x k = 1 1 − x d d x ( ∑ k = 0 ∞ x k ) = ∑ k = 0 ∞ k x k − 1 = 1 ( 1 − x ) 2 ∑ k = 0 ∞ k x k = x ( 1 − x ) 2 \sum_{k=0}^\infin x^k = \frac{1}{1-x} \\ \frac{d}{dx} (\sum_{k=0}^\infin x^k) = \sum_{k=0}^\infin k x^{k-1} = \frac{1}{(1-x)^2} \\ \sum_{k=0}^\infin k x^{k} = \frac{x}{(1-x)^2} k=0xk=1x1dxd(k=0xk)=k=0kxk1=(1x)21k=0kxk=(1x)2x

同理找到
∑ k = 0 ∞ k 2 x k = x ( 1 + x ) ( 1 − x ) 3 \sum_{k=0}^\infin k^2 x^k = \frac{x(1+x)}{(1-x)^3} k=0k2xk=(1x)3x(1+x)

最开始的生成函数经过同分化简之后可以得到:

( a − b + 1 ) x 2 + ( a + b − 2 ) x + 1 ( 1 − x ) 3 \frac{(a-b+1)x^2+(a+b-2)x+1}{(1-x)^3} (1x)3(ab+1)x2+(a+b2)x+1

然后这些多项式乘起来之后,得到

∏ ( ( a i − b i + 1 ) x 2 + ( a i + b i − 2 ) x + 1 ) ( 1 − x ) 3 m \frac{\prod \left( (a_i-b_i+1)x^2+(a_i+b_i-2)x+1 \right)}{(1-x)^{3m}} (1x)3m((aibi+1)x2+(ai+bi2)x+1)

利用广义二项式定理:

( 1 + x ) α = ∑ k = 0 ∞ ( α k ) x k (1+x)^\alpha = \sum_{k=0}^\infin \binom{\alpha}{k} x^k (1+x)α=k=0(kα)xk

就可以发现我们最后就是求一个多项式卷积, n t t ntt ntt即可

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 100010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
#define mod 998244353ll
struct NTT
{
    ll n, R[maxn], a[maxn], b[maxn];
    void init(ll bound)    //bound是积多项式的最高次幂
    {
        ll L(0);
        for(n=1;n<=bound;n<<=1,L++);
        for(ll i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)), a[i]=b[i]=0;
    }
    void ntt(ll* a, int opt)
    {
        ll i, j, k, wn, w, x, y, inv(em.fastpow(n,mod-2,mod));
        for(i=0;i<n;i++)if(i>R[i])swap(a[i],a[R[i]]);
        for(i=1;i<n;i<<=1)
        {
            if(opt==1)wn=em.fastpow(3,(mod-1)/(i<<1),mod);
            else wn=em.fastpow(3,(mod-1-(mod-1)/(i<<1)),mod);
            for(j=0;j<n;j+=i<<1)
                for(w=1,k=0;k<i;k++,w=w*wn%mod)
                {
                    x=a[k+j], y=a[k+j+i]*w%mod;
                    a[k+j]=(x+y)%mod, a[k+j+i]=(x-y)%mod;
                }
        }
        if(opt==-1)for(i=0;i<n;i++)(a[i]*=inv)%=mod;
    }
    void mult()
    {
        ntt(a,1), ntt(b,1);
        for(int i=0;i<n;i++)(a[i]*=b[i])%=mod;
        ntt(a,-1);
    }
}ntt;
#define sqr(x) ((x)*(x))
ll fact[maxn], _fact[maxn], inv[maxn], m, a[maxn], b[maxn];
ll C(ll n, ll m)
{
    if(n<0 or m<0 or m>n)return 0;
    return fact[n]*_fact[m]%mod*_fact[n-m]%mod;
}
int main()
{
    ll i, j, T;
    inv[1]=1;
    rep(i,2,maxn-1)inv[i]=inv[mod%i]*(mod-mod/i)%mod;
    fact[0]=_fact[0]=1;
    rep(i,1,maxn-1)fact[i]=fact[i-1]*i%mod, _fact[i]=_fact[i-1]*inv[i]%mod;
    m=read();
    rep(i,1,m)a[i]=read(), b[i]=read();
    ntt.init(10000);
    ntt.a[0]=1;
    auto &A=ntt.a;
    rep(i,1,m)
    {
        for(j=10000;j>=2;j--)
            A[j]=(A[j-2]*(a[i]-b[i]+1)+A[j-1]*(a[i]+b[i]-2)+A[j])%mod;
        A[1]=(A[0]*(a[i]+b[i]-2)+A[1])%mod;
    }
    auto &B=ntt.b;
    rep(i,0,10000)B[i]=C(3*m+i-1,i);
    ntt.mult();
    T=read();
    while(T--)printf("%lld\n",(A[read()]+mod)%mod);
    return 0;
}
《RSMA与速率拆分在有限反馈通信系统中的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统中的应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统中一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒性,特别是在资源受限和信道条件不理想的环境中。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个性化服务。 在有限反馈通信系统中,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA中,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码性能。 以下代码研究RSMA与MMSE预编码的结合以观察到如何在实际系统中应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射与接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **性能评估**:分析系统吞吐量、误码率等性能指标,对比不同策略的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值