无限手套(生成函数)

牛客 无限手套

输入描述:

第一行一个正整数m表示宝石的种类(1<=m<=1000)接下来M行,每行两个正整数ai, bi(0<=ai, bi<=10^9)接下来一行正整数q,共有q次询问(1<=q<=1000)接下来q行每行一个正整数n询问如果无限手套可以安装n个宝石则力量之和是多少。(1<=n<=10000)

输出描述:

一共q行,每行一个正整数表示答案。答案对998244353取模。

示例1

输入

2
2 1
1 0
2
3
4

输出

74
193

题解

考虑对每一个宝石的生成函数为
∑ k = 0 ∞ ( a i k 2 + b i k + 1 ) x k \sum_{k=0}^{\infty}(a_ik^2+b_ik+1)x^k k=0(aik2+bik+1)xk
化简过程:
∑ k = 0 ∞ ( a i k 2 + b i k + 1 ) x k = ∑ k = 0 ∞ x k + b i ∑ k = 0 ∞ k x k + a i ∑ k = 0 ∞ k 2 x k = 1 1 − x + b i x ( 1 − x ) 2 + a i x ( 1 + x ) ( 1 − x ) 3 = x 2 ( a i − b i + 1 ) + x ( a i + b i − 2 ) + 1 ( 1 − x ) 3 \begin{aligned} &\sum_{k=0}^{\infty}(a_ik^2+b_ik+1)x^k\\ =&\sum_{k=0}^{\infty}x^k+b_i\sum_{k=0}^{\infty}kx^k+a_i\sum_{k=0}^{\infty}k^2x^k\\ =&\cfrac{1}{1-x}+\cfrac{b_ix}{(1-x)^2}+\cfrac{a_ix(1+x)}{(1-x)^3}\\ =&\cfrac{x^2(a_i-b_i+1)+x(a_i+b_i-2)+1}{(1-x)^3} \end{aligned} ===k=0(aik2+bik+1)xkk=0xk+bik=0kxk+aik=0k2xk1x1+(1x)2bix+(1x)3aix(1+x)(1x)3x2(aibi+1)+x(ai+bi2)+1
其中也许令你迷惑的是 ∑ k = 0 ∞ k 2 x k = x ( 1 + x ) ( 1 − x ) 3 \displaystyle\sum_{k=0}^{\infty}k^2x^k=\cfrac{x(1+x)}{(1-x)^3} k=0k2xk=(1x)3x(1+x)

推导过程如下:
∑ k = 0 ∞ x k = 1 1 − x    ( ∣ x ∣ < 1 )    ⟹      d d x ( ∑ k = 0 ∞ x k ) = 1 ( 1 − x ) 2 ∑ k = 0 ∞ k x k − 1 = 1 ( 1 − x ) 2 ∑ k = 0 ∞ k x k = x ( 1 − x ) 2    ⟹      d d x ( ∑ k = 0 ∞ k x k ) = ( 1 − x ) 2 + 2 x ( 1 − x ) ( 1 − x ) 4 ∑ k = 0 ∞ k 2 x k − 1 = 1 + x ( 1 − x ) 3    ⟹      ∑ k = 0 ∞ k 2 x k = x ( 1 + x ) ( 1 − x ) 3 \begin{aligned} \sum_{k=0}^{\infty}x^k&=\cfrac{1}{1-x}\ \ (|x|<1)\\ \implies\ \cfrac{d}{dx}(\sum_{k=0}^{\infty}x^k)&=\cfrac{1}{(1-x)^2}\\ \sum_{k=0}^{\infty}kx^{k-1}&=\cfrac{1}{(1-x)^2}\\ \sum_{k=0}^{\infty}kx^{k}&=\cfrac{x}{(1-x)^2}\\ \implies\ \cfrac{d}{dx}(\sum_{k=0}^{\infty}kx^k)&=\cfrac{(1-x)^2+2x(1-x)}{(1-x)^4}\\ \sum_{k=0}^{\infty}k^2x^{k-1}&=\cfrac{1+x}{(1-x)^3}\\ \implies\ \sum_{k=0}^{\infty}k^2x^k&=\cfrac{x(1+x)}{(1-x)^3} \end{aligned} k=0xk dxd(k=0xk)k=0kxk1k=0kxk dxd(k=0kxk)k=0k2xk1 k=0k2xk=1x1  (x<1)=(1x)21=(1x)21=(1x)2x=(1x)4(1x)2+2x(1x)=(1x)31+x=(1x)3x(1+x)
m种宝石的生成函数相乘
∏ i = 1 m [ ( a i − b i + 1 ) x 2 + ( a i + b i − 2 ) x + 1 ] ( 1 − x ) 3 m \cfrac{\displaystyle\prod_{i=1}^{m}[(a_i-b_i+1)x^2+(a_i+b_i-2)x+1]}{(1-x)^{3m}} (1x)3mi=1m[(aibi+1)x2+(ai+bi2)x+1]

对于 1 ( 1 − x ) 3 m \cfrac{1}{(1-x)^{3m}} (1x)3m1我们用幂级数展开,展开方法为:
( 1 − x ) − n = ( − x ) 0 + ( − n ) ( − x ) 1 + ( − n ) ( − n − 1 ) 2 ! ( − x ) 2 + ⋯ = 1 + n x + n ( n + 1 ) 2 ! x 2 + n ( n + 1 ) ( n + 2 ) 3 ! x 3 + ⋯ = 1 + n x + C n + 1 2 x 2 + C n + 2 3 x 3 + ⋯ \begin{aligned} (1-x)^{-n}&=(-x)^0+(-n)(-x)^1+\cfrac{(-n)(-n-1)}{2!}(-x)^2+\cdots\\ &=1+nx+\cfrac{n(n+1)}{2!}x^2+\cfrac{n(n+1)(n+2)}{3!}x^3+\cdots\\ &=1+nx+C_{n+1}^{2}x^2+C_{n+2}^{3}x^3+\cdots \end{aligned} (1x)n=(x)0+(n)(x)1+2!(n)(n1)(x)2+=1+nx+2!n(n+1)x2+3!n(n+1)(n+2)x3+=1+nx+Cn+12x2+Cn+23x3+

于是式子转化为两个多项式相乘
最后 x n x^n xn的系数即为所求

代码

// #include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <unordered_map>
#include <set>
#include <vector>
#include <assert.h>
#include <cmath>
#include <ctime>
using namespace std;
#define me(x,y) memset((x),(y),sizeof (x))
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))
// #define int __int128_t

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

const int maxn = 1e5+10;
const int inf = __INT32_MAX__;
const ll INF = __LONG_LONG_MAX__;
const ll MOD = 998244353;
const double eps = 1e-8;
const double pi = std::acos(-1);
const string cars[] = {"?","?","?"};

ll f[maxn],finv[maxn],inv[maxn];
void init(){
    inv[1] = 1;
    for(int i = 2; i < maxn;++i) inv[i] = 1ll*(MOD-MOD/i)*inv[MOD%i]%MOD;
    f[0] = finv[0] = 1;
    for(int i = 1; i < maxn; ++i){
        f[i] = f[i-1]*i%MOD;
        finv[i] = finv[i-1]*inv[i]%MOD;
    }
}
ll comb(int n,int m){
    if(m < 0 || m > n) return 0;
    return f[n]*finv[n-m]%MOD*finv[m]%MOD;
}

ll x[maxn];
int main(){
    ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
    freopen("1in.in","r",stdin);
    freopen("1out.out","w",stdout);
#endif    
    init();
    int a,b,A,B,C,m;cin>>m;
    x[0] = 1;
    for(int i = 1; i <= m; ++i){
        cin>>a>>b;
        A = a-b+1,B = a+b-2,C = 1;
        A = (A%MOD+MOD)%MOD,B = (B%MOD+MOD)%MOD;
        for(int j = 2*i; j >= 2; --j) x[j] = (x[j]*C%MOD+x[j-1]*B%MOD+x[j-2]*A%MOD)%MOD;
        x[1] = (x[1]*C%MOD+x[0]*B%MOD)%MOD;
        x[0] = x[0]*C%MOD;
    }
    int q;cin>>q;
    while(q--){
        int n;cin>>n;
        ll sum = 0;
        for(int i = 0; i <= n; ++i) sum = (sum+comb(3*m+i-1,i)*x[n-i]%MOD)%MOD;
        cout<<sum<<endl;
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值