题目
已知函数
f(x)=a2x+(a−2)ex−x
(1) 讨论
f(x)
的单调性
(2) 若
f(x)
有两个零点,求
a
的取值范围
第一问
f′(x)=2ae2x+(a−2)ex−1
令
t=ex(t>0), g(t)=2at2+(a−2)t−1=(at−1)(2t+1)
零点是
t1=1a,t2=−12
(舍去)
(i)若
a≤0
,则当
t>0
时,
f′(x)<0
恒成立,即
f(x)
单调递减
(ii)若
a>0
,
当
t∈(0,1a)
时,
g(t)<0
,
f′(x)<0
,
f(x)
单调递减;
当
t∈(1a,+∞)
时,
f(x)
单调递增。
没啥难的
第二问
由第一问的结论知道,如果
a≤0
,则函数单调递减,不可能有两个零点。
因此
a>0
注意到函数的定义域是实数集,函数值是先递减后递增的,所以极小值(也就是最小值)肯定要小于
0
,而且在最小值的左右两侧都要有大于
上述条件的转化是充要的。
最小值也就是当
ex=1a
,
x=−lna
时,
f(−lna)=1−1a+lna<0
这里可以求导也可以不求导,直接看出当
a=1
时函数值为
0
,当
这样就得到一个范围
a∈(0,1)
这样是不够的,应该还要确保
x=−lna
的左右两侧都有函数值为正数的点存在
对于左侧,
f(−1)=a−2+(a−2)e−1+1>−2e−1+1>0
对于右侧,
f(x)=a2x+(a−2)ex−x>−2ex−x
,答案上比较玄学,得多看几遍才能搞明白它是咋想出来的
假如存在
x0
使得,
f(x0)>0
,稍微化一下式子,
ex0(2aex0+a−2)−x0>0
你想让这个思博式子大于零,我反正看不出怎么直接找到
x0
。
然后就想啊,能不能放缩一下放缩成比较好观察的式子
如果括号里那一大串大于
1
,那么
所以需要找到
显然,
x0>ln(−12+1a)
就可以,因为
ln(−12+1a)
是个常数,所以这样的
x0
一定存在。
写过程的话,可以直接令
x0>max{−lna,ln(−12+1a)}
,然后进行上面的那一串推导就行了。
因此答案是
a∈(0,1)
总结
第二问的最后那个地方比较烧脑,前面的应该都比较自然而然。