数二四套卷选填

本文探讨了几何、代数与微积分在解决数学问题中的结合应用。分析了定积分比大小问题,指出错误地运用了夹逼定理和N-L法。同时,涉及线性代数中特征值和特征向量的求解,指明施密特正交化的重要性。通过对错误的反思,强调了专注度和概念理解在解题过程中的关键作用。
摘要由CSDN通过智能技术生成

在这里插入图片描述f
分析: 该 题 主 要 是 用 到 了 夹 逼 定 理 , 一 个 重 要 的 不 等 式 : 该题主要是用到了夹逼定理,一个重要的不等式:
设 a < b < c , 则 有 a ≤ lim ⁡ n → ∞ [ ( x 2 2 ) n + ( x 2 ) n + x n ] ≤ c 设a<b<c,则有a \le \lim_{n \rightarrow \infty }[(\frac{x^{2}}{2})^{n}+(\frac{x}{2})^{n}+x^{n}]\le c a<b<c,alimn[(2x2)n+(2x)n+xn]c

在这里插入图片描述
分析: 题 型 分 析 错 误 , 该 题 是 定 积 分 比 大 小 问 题 , 已 知 原 函 数 的 基 本 图 像 , 应 用 N − L 法 进 行 求 解 。 显 然 , 其 积 分 后 与 1 进 行 比 大 小 , 且 原 函 数 是 一 个 凹 函 数 , 则 f 题型分析错误,该题是定积分比大小问题,已知原函数的基本图像,应用N-L法进行求解。显然,其积分后与1进行比大小,且原函数是一个凹函数,则f NL1f
在这里插入图片描述
分析: 该 题 看 选 项 的 时 候 看 错 了 , 采 用 的 是 放 缩 的 方 法 。 显 然 , 题 中 的 x − l n ( 1 + x ) 以 及 区 间 [ 0 , 2 ] 是 想 让 我 们 往 lim ⁡ x r i g h t a r r o w 0 ( x − l n ( 1 + x ) ) = 1 2 x 2 去 思 考 , 则 , 由 f ( x ) = x − l n ( 1 + x ) − 1 2 x 2 可 得 答 案 。 该题看选项的时候看错了,采用的是放缩的方法。显然,题中的x-ln(1+x)以及区间[0,2]是想让我们往\lim _{xrightarrow 0}(x-ln(1+x))=\frac{1}{2}x^{2}去思考,则,由f(x)=x-ln(1+x)-\frac{1}{2}x^{2}可得答案。 xln(1+x)[0,2]limxrightarrow0(xln(1+x))=21x2f(x)=xln(1+x)21x2
在这里插入图片描述
分析: 该 题 选 择 时 没 有 进 行 分 析 , 主 观 臆 断 选 错 了 。 该题选择时没有进行分析,主观臆断选错了。
令 α 3 = k α 1 k ≠ 0 , 1. 则 选 项 C 有 : k 1 ( α 1 + α 2 ) + k 2 ( α 1 + α 3 ) = [ k 1 + ( k + 1 ) ∗ k 2 ] α 1 + k 1 α 2 = 0 , 因 为 α 1 、 α 2 线 性 无 关 , 所 以 k 1 = 0 , 显 然 此 时 可 以 有 k = − 1 或 k 2 = 0 两 个 可 能 性 。 令\alpha_3=k\alpha_1 \quad k\ne0,1.则选项C有:k_1(\alpha_1+\alpha_2)+k_2(\alpha_1+\alpha_3)=[k_1+(k+1)*k_2]\alpha_1+k_1\alpha_2=0,因为\alpha_1、\alpha_2线性无关,所以k_1=0,显然此时可以有k=-1或k_2=0两个可能性。 α3=kα1k=0,1.Ck1(α1+α2)+k2(α1+α3)=[k1+(k+1)k2]α1+k1α2=0,α1α2线k1=0,k=1k2=0

同 理 可 得 D , k 1 ( α 1 + α 2 ) + k 2 ( α 2 + α 3 ) = ( k 1 + k ∗ k 2 ) α 1 + ( k 1 + k 2 ) α 2 = 0 , 则 k 1 + k 2 和 k 1 + k ∗ k 2 要 同 时 为 0 , 显 然 , 当 且 仅 当 k 1 = k 2 = 0 时 成 立 。 同理可得D,k_1(\alpha_1+\alpha_2)+k_2(\alpha_2+\alpha_3)=(k_1+k*k_2)\alpha_1+(k_1+k_2)\alpha_2=0,则k_1+k_2和k_1+k*k_2要同时为0,显然,当且仅当k_1=k_2=0时成立。 Dk1(α1+α2)+k2(α2+α3)=k1+kk2)α1+(k1+k2)α2=0,k1+k2k1+kk20k1=k2=0
在这里插入图片描述
分析: 面 积 区 间 弄 错 了 。 面积区间弄错了。
在这里插入图片描述
分析: 最 值 选 取 不 完 整 , 此 处 应 有 四 个 驻 点 , 只 判 断 出 了 两 个 。 该 题 有 两 种 解 法 , 此 处 选 用 参 数 方 程 法 最值选取不完整,此处应有四个驻点,只判断出了两个。该题有两种解法,此处选用参数方程法

f ( x , y ) = { x = 3 cos ⁡ ( t ) y = 3 2 sin ⁡ ( t ) f(x,y)= \left\{ \begin{array}{ll} x=3\cos (t) \\ \quad\\ y=\frac{3}{\sqrt{2}}\sin(t) \end{array} \right. f(x,y)=x=3cos(t)y=2 3sin(t) 则 由 拉 格 朗 日 函 数 得 : 则由拉格朗日函数得: :

ϕ ( t , λ ) = 27 sin ⁡ 3 ( x ) + 27 2 ( 2 ) cos ⁡ ( t ) + C + λ ( 9 sin ⁡ 2 ( t ) + 9 cos ⁡ 2 ( t ) − 9 ) . \phi(t,\lambda)=27\sin^{3}(x)+\frac{27}{2\sqrt(2)}\cos(t)+C+\lambda(9\sin^{2}(t)+9\cos^{2}(t)-9). ϕ(t,λ)=27sin3(x)+2( 2)27cos(t)+C+λ(9sin2(t)+9cos2(t)9).
得 t a n ( t ) = 2 ( 2 ) , π , π 2 进 而 得 到 C = 28 得tan(t)=2\sqrt(2),\pi,\frac{\pi}{2}进而得到C=28 tan(t)=2( 2),π,2πC=28

在这里插入图片描述
分析: 该 题 中 z = f ( u , v ) , 已 知 z x ′ , z y ′ 两 个 方 程 两 个 未 知 数 , 可 以 得 到 u , v 的 值 , 进 而 求 导 带 入 。 该题中z=f(u,v),已知z_{x}',z_{y}'两个方程两个未知数,可以得到u,v的值,进而求导带入。 z=f(u,v),zx,zyuv

大题:
在这里插入图片描述
分析: 洛 必 达 求 导 出 错 。 洛必达求导出错。
首 先 , 应 将 整 个 函 数 视 为 一 个 整 体 , 对 整 个 函 数 求 极 限 , 而 分 子 指 数 部 分 又 不 得 不 先 进 行 简 化 , 因 此 先 将 分 母 的 e 和 分 子 的 e 2 提 出 , 得 : 首先,应将整个函数视为一个整体,对整个函数求极限,而分子指数部分又不得不先进行简化,因此先将分母的e和分子的e^{2}提出,得: ee2

e lim ⁡ x → 1 e f ( x ) − 2 − 1 e x − 1 − 1 ↔ lim ⁡ x → 1 ( 1 + ( 1 x ) x − 2 x − 1 = e lim ⁡ x → 1 e l n ( 2 ) [ l n 2 − 1 2 ] = 2 e l n 2 − e e\lim_{x \rightarrow 1}\frac{e^{f(x)-2}-1}{e^{x-1}-1}\leftrightarrow \lim_{x \rightarrow 1}\frac{(1+(\frac{1}{x})^{x}-2}{x-1}=e\lim_{x \rightarrow 1}e^{ln(2)}[ln2-\frac{1}{2}]=2eln2-e elimx1ex11ef(x)21limx1x1(1+(x1)x2=elimx1eln(2)[ln221]=2eln2e
在这里插入图片描述
分析: 做 题 得 专 注 度 不 够 , 导 致 本 可 以 得 分 得 题 错 了 。 做题得专注度不够,导致本可以得分得题错了。
显 然 该 题 是 一 个 积 分 不 等 式 问 题 , 通 常 采 用 N − L 法 或 l a g r a n g e 进 行 求 解 , 根 据 ∫ a b f ( x ) d x = 0 , 由 l a g r a n g 可 得 : 显然该题是一个积分不等式问题,通常采用N-L法或lagrange进行求解,根据\int_{a}^{b}f(x)dx=0,由lagrang可得: NLlagrangeabf(x)dx=0,lagrang

∃ x ∈ ( a , a + b 2 ) F ( x ) = ∫ a x f ( x ) d x = f ( ξ 1 ) ( x − a ) ξ 1 ∈ ( a , a + b 2 ) \exists x\in(a,\frac{a+b}{2}) \quad F(x)=\int_{a}^{x}f(x)dx=f(\xi_{1})(x-a)\quad\xi_1\in(a,\frac{a+b}{2}) x(a,2a+b)F(x)=axf(x)dx=f(ξ1)(xa)ξ1(a,2a+b)
∃ x ∈ ( a + b 2 , b ) F ( x ) = ∫ a x f ( x ) d x = f ( ξ 2 ) ( b − x ) ξ 1 ∈ ( a + b 2 , b ) \exists x\in(\frac{a+b}{2},b) \quad F(x)=\int_{a}^{x}f(x)dx=f(\xi_{2})(b-x)\quad\xi_1\in(\frac{a+b}{2},b) x(2a+b,b)F(x)=axf(x)dx=f(ξ2)(bx)ξ1(2a+b,b)

之 后 , 找 到 题 中 不 等 式 与 F ( x ) 的 关 系 , 由 分 部 积 分 可 得 : ∣ ∫ a b x f ( x ) d x ∣ = ∣ x F ( x ) ∣ a b − ∫ a b F ( x ) d x ∣ = ∣ ∫ a b F ( x ) d x ∣ ≤ ∫ a b ∣ F ( x ) ∣ d x ≤ M [ ∫ a a + b 2 ( x − a ) d x + ∫ a + b 2 b ( b − x ) ] = M 4 ( b − a ) 2 之后,找到题中不等式与F(x)的关系,由分部积分可得:|\int_{a}^{b}xf(x)dx|=|xF(x)|_{a}^{b}-\int_{a}^{b}F(x)dx|=|\int_{a}^{b}F(x)dx|\le\int_{a}^{b}|F(x)|dx\le M[\int_{a}^{\frac{a+b}{2}}(x-a)dx+\int_{\frac{a+b}{2}}^{b}(b-x)]=\frac{M}{4}(b-a)^2 F(x)abxf(x)dx=xF(x)ababF(x)dx=abF(x)dxabF(x)dxM[a2a+b(xa)dx+2a+bb(bx)]=4M(ba)2
在这里插入图片描述
分析: 该 题 出 错 主 要 是 由 于 自 己 对 概 念 得 不 清 晰 造 成 的 , 首 先 可 以 很 容 易 得 到 λ 1 = 2 , λ 2 = 3 , λ 3 , 而 题 中 主 要 是 求 Q , 即 f ( y 1 , y 2 , y 3 ) = Y T Q T B Q Y , 已 知 二 重 特 征 值 得 特 征 方 程 , 由 对 称 矩 阵 特 征 方 程 的 正 交 性 可 以 得 到 λ 1 的 特 征 向 量 , 然 后 施 密 特 正 交 化 即 可 求 出 Q 。 该题出错主要是由于自己对概念得不清晰造成的,首先可以很容易得到\lambda_1=2,\lambda_2=3,\lambda_3,而题中主要是求Q,即f(y_1,y_2,y_3)=Y^{T}Q^{T}BQY,已知二重特征值得特征方程,由对称矩阵特征方程的正交性可以得到\lambda_1的特征向量,然后施密特正交化即可求出Q。 ,λ1=2,λ2=3,λ3,Qfy1,y2,y3)=YTQTBQY,λ1Q

而 我 没 有 采 用 这 种 方 法 , 而 是 令 A = ( a b c b d e c e f ) 而我没有采用这种方法,而是令\mathbf{A} = \left( \begin{array}{ccc} a & b & c \\ b & d & e \\ c& e & f\\ \end{array} \right) A=abcbdecef 然 后 利 用 特 征 值 定 义 进 行 求 解 , 但 发 现 无 法 求 出 , 是 为 什 么 ? 然后利用特征值定义进行求解,但发现无法求出,是为什么?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值