2017理数全国卷II T21

题目

  已知函数 f(x)=ax2axxlnx ,且 f(x)0
  (1) 求a
  (2) 证明: f(x) 存在唯一的极大值点 x0 ,且 e2<f(x0)<22

第一问

  一开始我直接把 f(x) 求导,结果算了半天也没算出来。
  看了答案之后,心想:原来还有这种操作。
  因为这个题的定义域是 (0,+) ,让求的东西又只是一个常数的值,所以 x 可以除掉
  即令g(x)=axalnx
   g(x)=a1x
  令 g(x)=0 解得 x=1a
  (i)若 a0 ,则 g(x) 单调递减,根据 g(1)=0 可知当 x(0,1) g(x)<0 f(x)<0 ,舍掉。
  (ii)若 a>0 ,则 g(x) 先递减后递增,极小值为 g(1a)=1a+lna
  因为题目要求不小于 0 ,而g(1)又恰好等于 0 ,因此g(1)就是最小值。
  即 1a=1 a=1

第二问

   f(x)=x2xxlnx
   f(x)=2x2lnx
  这样还是毫无头绪,继续求导
   f′′(x)=21x
  这样就比较好做了
  当 x(0,12) 时, f′′(x)<0 f(x)
  当 x(12,+) 时, f′′(x)>0 f(x)
   f(12)=1+ln2<0
   f(e2)=2e22+2>0
   f(1)=0
   f(e)=2e21>0
  从以上四个式子可以得出结论, f(x) 在定义域内是先递减后递增的,且存在一段 (0,12) 的子区间,这段的函数值大于 0 ,也存在(12)的子区间,函数值大于 0
  因此可以大致画出图像(我就不画了)。
  所以f(x)的情形是增-减-增。
  它问的是极大值点,那么极大值点 x0 肯定是在 (0,12) 这个区间上的。
  先写出这个函数值, f(x0)=x20x0x0lnx0 ,带着个 ln ,没法求值域,考虑换掉
   f(x0)=2x02lnx0=0 ln(x0)=2x02 ,代回去
   f(x0)=x0(1x0) ,结合范围, f(x0)14
  左边这个小于号,依然是比较神奇的做法,将 x=1e 代进 f(x) ,就发现 f(1e)=e2
  然后因为 1e(0,1) ,所以 f(x0)>f(1e)=e2
  这样就证完了
  
  概括来说,其实这一问第一个小于号就是利用极值的意义来比较大小(因为利用了 f(x0) 在区间 (0,1) 上是最大值这个条件)。
  第二个小于号则是利用函数的值域,代换 ln 则是一个特殊的技巧。

经验总结

  1、灵活运用导数,极值处导数值为零可以用来代换一些东西
  2、证明函数值大于或小于一个数,可以考虑函数单调性、极值、值域这些方法
  3、善于观察,将 1 0 e 1e这些值带入函数看看有什么特殊值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值